Evaluation of Direct Anodic Oxidation Process for the Treatment of Petroleum Refinery Wastewater

AbstractThis paper investigates the treatment of real petroleum refinery wastewater (PRW) using an electrochemical oxidation process. Direct anodic oxidation, an effective advanced electrochemical oxidation process (AEOP), was applied with different electrodes using a parallel-plate batch electroche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental engineering (New York, N.Y.) N.Y.), 2018-07, Vol.144 (7)
Hauptverfasser: Ghanim, A. N, Hamza, A. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of environmental engineering (New York, N.Y.)
container_volume 144
creator Ghanim, A. N
Hamza, A. S
description AbstractThis paper investigates the treatment of real petroleum refinery wastewater (PRW) using an electrochemical oxidation process. Direct anodic oxidation, an effective advanced electrochemical oxidation process (AEOP), was applied with different electrodes using a parallel-plate batch electrochemical reactor. The petroleum refinery wastewater originated from a national oil refinery for producing fuels, lubricants, and intermediates. Experiments treated wastewater samples of 500–510  mg/L initial chemical oxygen demand (COD) concentration effluent flowed directly from the refinery to a physical treatment unit. Direct anodic oxidation, which is characterized by the generation of a hydroxyl radical (OH•), can potentially destroy a wide range of organic pollutants. This paper studies several parameters: current density, initial pH, temperature, and the type of electrode. The kinetic study shows that high COD removal efficiency can be achieved following a pseudo-first-order reaction rate. The rate constants of oxidative degradation of organic pollutants by OH• radicals are determined for different anode materials. Results reveal that the COD removal efficiency of 84.8% is obtained at pH 4.0, 25°C, and 50  mA cm−2 using PbO2 anode, whereas COD removal efficiency of 86.3% is obtained at pH 7.0, 50°C, and 50  mA cm−2 current density using a carbon felt anode. However, the highest COD removal is predicted at pH 4 and 55°C for most electrodes.
doi_str_mv 10.1061/(ASCE)EE.1943-7870.0001389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2032342460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032342460</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-ec0fd87b69e8efdae2ed12d7ee9c834356f35863ae78c76fc0bfc70023834df3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKf_IeiNXrQmTZe03o1ZP2CwoQMvY5aeYMfWzCRV9-9t6dQrrw6c8z7vgQehc0piSji9vhw_T4qroohpnrJIZILEhBDKsvwADX53h2hABGNRzkRyjE68X7WZlOdigF6LD7VuVKhsja3Bt5UDHfC4tmWl8eyrKvvT3FkN3mNjHQ5vgBcOVNhAHTpoDsHZNTQb_ASmqsHt8IvyAT5VAHeKjoxaezjbzyFa3BWLyUM0nd0_TsbTSDGRhgg0MWUmljyHDEypIIGSJqUAyHXGUjbiho0yzhSITAtuNFkaLQhJWHstDRuii7526-x7Az7IlW1c3X6UCWEJS5OUkzZ106e0s947MHLrqo1yO0mJ7IRK2QmVRSE7ebKTJ_dCW5j3sPIa_up_yP_BbxEge48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032342460</pqid></control><display><type>article</type><title>Evaluation of Direct Anodic Oxidation Process for the Treatment of Petroleum Refinery Wastewater</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Ghanim, A. N ; Hamza, A. S</creator><creatorcontrib>Ghanim, A. N ; Hamza, A. S</creatorcontrib><description>AbstractThis paper investigates the treatment of real petroleum refinery wastewater (PRW) using an electrochemical oxidation process. Direct anodic oxidation, an effective advanced electrochemical oxidation process (AEOP), was applied with different electrodes using a parallel-plate batch electrochemical reactor. The petroleum refinery wastewater originated from a national oil refinery for producing fuels, lubricants, and intermediates. Experiments treated wastewater samples of 500–510  mg/L initial chemical oxygen demand (COD) concentration effluent flowed directly from the refinery to a physical treatment unit. Direct anodic oxidation, which is characterized by the generation of a hydroxyl radical (OH•), can potentially destroy a wide range of organic pollutants. This paper studies several parameters: current density, initial pH, temperature, and the type of electrode. The kinetic study shows that high COD removal efficiency can be achieved following a pseudo-first-order reaction rate. The rate constants of oxidative degradation of organic pollutants by OH• radicals are determined for different anode materials. Results reveal that the COD removal efficiency of 84.8% is obtained at pH 4.0, 25°C, and 50  mA cm−2 using PbO2 anode, whereas COD removal efficiency of 86.3% is obtained at pH 7.0, 50°C, and 50  mA cm−2 current density using a carbon felt anode. However, the highest COD removal is predicted at pH 4 and 55°C for most electrodes.</description><identifier>ISSN: 0733-9372</identifier><identifier>EISSN: 1943-7870</identifier><identifier>DOI: 10.1061/(ASCE)EE.1943-7870.0001389</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Anodes ; Anodizing ; Chemical oxygen demand ; Current density ; Efficiency ; Electrochemical oxidation ; Electrochemistry ; Electrode materials ; Electrodes ; Environmental degradation ; Free radicals ; Hydroxyl radicals ; Intermediates ; Lead oxides ; Lubricants ; Nuclear fuels ; Oxidation ; Oxidation process ; Ozone ; Petroleum ; Petroleum refineries ; pH effects ; Pollutants ; Rate constants ; Refineries ; Refinery wastes ; Technical Papers ; Wastewater treatment</subject><ispartof>Journal of environmental engineering (New York, N.Y.), 2018-07, Vol.144 (7)</ispartof><rights>2018 American Society of Civil Engineers</rights><rights>Copyright American Society of Civil Engineers Jul 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-ec0fd87b69e8efdae2ed12d7ee9c834356f35863ae78c76fc0bfc70023834df3</citedby><cites>FETCH-LOGICAL-a374t-ec0fd87b69e8efdae2ed12d7ee9c834356f35863ae78c76fc0bfc70023834df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EE.1943-7870.0001389$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EE.1943-7870.0001389$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76162,76170</link.rule.ids></links><search><creatorcontrib>Ghanim, A. N</creatorcontrib><creatorcontrib>Hamza, A. S</creatorcontrib><title>Evaluation of Direct Anodic Oxidation Process for the Treatment of Petroleum Refinery Wastewater</title><title>Journal of environmental engineering (New York, N.Y.)</title><description>AbstractThis paper investigates the treatment of real petroleum refinery wastewater (PRW) using an electrochemical oxidation process. Direct anodic oxidation, an effective advanced electrochemical oxidation process (AEOP), was applied with different electrodes using a parallel-plate batch electrochemical reactor. The petroleum refinery wastewater originated from a national oil refinery for producing fuels, lubricants, and intermediates. Experiments treated wastewater samples of 500–510  mg/L initial chemical oxygen demand (COD) concentration effluent flowed directly from the refinery to a physical treatment unit. Direct anodic oxidation, which is characterized by the generation of a hydroxyl radical (OH•), can potentially destroy a wide range of organic pollutants. This paper studies several parameters: current density, initial pH, temperature, and the type of electrode. The kinetic study shows that high COD removal efficiency can be achieved following a pseudo-first-order reaction rate. The rate constants of oxidative degradation of organic pollutants by OH• radicals are determined for different anode materials. Results reveal that the COD removal efficiency of 84.8% is obtained at pH 4.0, 25°C, and 50  mA cm−2 using PbO2 anode, whereas COD removal efficiency of 86.3% is obtained at pH 7.0, 50°C, and 50  mA cm−2 current density using a carbon felt anode. However, the highest COD removal is predicted at pH 4 and 55°C for most electrodes.</description><subject>Anodes</subject><subject>Anodizing</subject><subject>Chemical oxygen demand</subject><subject>Current density</subject><subject>Efficiency</subject><subject>Electrochemical oxidation</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Environmental degradation</subject><subject>Free radicals</subject><subject>Hydroxyl radicals</subject><subject>Intermediates</subject><subject>Lead oxides</subject><subject>Lubricants</subject><subject>Nuclear fuels</subject><subject>Oxidation</subject><subject>Oxidation process</subject><subject>Ozone</subject><subject>Petroleum</subject><subject>Petroleum refineries</subject><subject>pH effects</subject><subject>Pollutants</subject><subject>Rate constants</subject><subject>Refineries</subject><subject>Refinery wastes</subject><subject>Technical Papers</subject><subject>Wastewater treatment</subject><issn>0733-9372</issn><issn>1943-7870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKf_IeiNXrQmTZe03o1ZP2CwoQMvY5aeYMfWzCRV9-9t6dQrrw6c8z7vgQehc0piSji9vhw_T4qroohpnrJIZILEhBDKsvwADX53h2hABGNRzkRyjE68X7WZlOdigF6LD7VuVKhsja3Bt5UDHfC4tmWl8eyrKvvT3FkN3mNjHQ5vgBcOVNhAHTpoDsHZNTQb_ASmqsHt8IvyAT5VAHeKjoxaezjbzyFa3BWLyUM0nd0_TsbTSDGRhgg0MWUmljyHDEypIIGSJqUAyHXGUjbiho0yzhSITAtuNFkaLQhJWHstDRuii7526-x7Az7IlW1c3X6UCWEJS5OUkzZ106e0s947MHLrqo1yO0mJ7IRK2QmVRSE7ebKTJ_dCW5j3sPIa_up_yP_BbxEge48</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Ghanim, A. N</creator><creator>Hamza, A. S</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20180701</creationdate><title>Evaluation of Direct Anodic Oxidation Process for the Treatment of Petroleum Refinery Wastewater</title><author>Ghanim, A. N ; Hamza, A. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-ec0fd87b69e8efdae2ed12d7ee9c834356f35863ae78c76fc0bfc70023834df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Anodizing</topic><topic>Chemical oxygen demand</topic><topic>Current density</topic><topic>Efficiency</topic><topic>Electrochemical oxidation</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Environmental degradation</topic><topic>Free radicals</topic><topic>Hydroxyl radicals</topic><topic>Intermediates</topic><topic>Lead oxides</topic><topic>Lubricants</topic><topic>Nuclear fuels</topic><topic>Oxidation</topic><topic>Oxidation process</topic><topic>Ozone</topic><topic>Petroleum</topic><topic>Petroleum refineries</topic><topic>pH effects</topic><topic>Pollutants</topic><topic>Rate constants</topic><topic>Refineries</topic><topic>Refinery wastes</topic><topic>Technical Papers</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghanim, A. N</creatorcontrib><creatorcontrib>Hamza, A. S</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanim, A. N</au><au>Hamza, A. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Direct Anodic Oxidation Process for the Treatment of Petroleum Refinery Wastewater</atitle><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>144</volume><issue>7</issue><issn>0733-9372</issn><eissn>1943-7870</eissn><abstract>AbstractThis paper investigates the treatment of real petroleum refinery wastewater (PRW) using an electrochemical oxidation process. Direct anodic oxidation, an effective advanced electrochemical oxidation process (AEOP), was applied with different electrodes using a parallel-plate batch electrochemical reactor. The petroleum refinery wastewater originated from a national oil refinery for producing fuels, lubricants, and intermediates. Experiments treated wastewater samples of 500–510  mg/L initial chemical oxygen demand (COD) concentration effluent flowed directly from the refinery to a physical treatment unit. Direct anodic oxidation, which is characterized by the generation of a hydroxyl radical (OH•), can potentially destroy a wide range of organic pollutants. This paper studies several parameters: current density, initial pH, temperature, and the type of electrode. The kinetic study shows that high COD removal efficiency can be achieved following a pseudo-first-order reaction rate. The rate constants of oxidative degradation of organic pollutants by OH• radicals are determined for different anode materials. Results reveal that the COD removal efficiency of 84.8% is obtained at pH 4.0, 25°C, and 50  mA cm−2 using PbO2 anode, whereas COD removal efficiency of 86.3% is obtained at pH 7.0, 50°C, and 50  mA cm−2 current density using a carbon felt anode. However, the highest COD removal is predicted at pH 4 and 55°C for most electrodes.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EE.1943-7870.0001389</doi></addata></record>
fulltext fulltext
identifier ISSN: 0733-9372
ispartof Journal of environmental engineering (New York, N.Y.), 2018-07, Vol.144 (7)
issn 0733-9372
1943-7870
language eng
recordid cdi_proquest_journals_2032342460
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Anodes
Anodizing
Chemical oxygen demand
Current density
Efficiency
Electrochemical oxidation
Electrochemistry
Electrode materials
Electrodes
Environmental degradation
Free radicals
Hydroxyl radicals
Intermediates
Lead oxides
Lubricants
Nuclear fuels
Oxidation
Oxidation process
Ozone
Petroleum
Petroleum refineries
pH effects
Pollutants
Rate constants
Refineries
Refinery wastes
Technical Papers
Wastewater treatment
title Evaluation of Direct Anodic Oxidation Process for the Treatment of Petroleum Refinery Wastewater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Direct%20Anodic%20Oxidation%20Process%20for%20the%20Treatment%20of%20Petroleum%20Refinery%20Wastewater&rft.jtitle=Journal%20of%20environmental%20engineering%20(New%20York,%20N.Y.)&rft.au=Ghanim,%20A.%20N&rft.date=2018-07-01&rft.volume=144&rft.issue=7&rft.issn=0733-9372&rft.eissn=1943-7870&rft_id=info:doi/10.1061/(ASCE)EE.1943-7870.0001389&rft_dat=%3Cproquest_cross%3E2032342460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2032342460&rft_id=info:pmid/&rfr_iscdi=true