Sparse Technique for Images Corrupted by Mixed Gaussian-Impulsive Noise
In this paper, a novel framework is presented for denoising images that have been corrupted by a mixture of additive and impulsive noise. The proposed method consists of three main stages: impulsive noise suppression, additive noise suppression and post-processing. In the first stage, a pixel that h...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2018-12, Vol.37 (12), p.5389-5416 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5416 |
---|---|
container_issue | 12 |
container_start_page | 5389 |
container_title | Circuits, systems, and signal processing |
container_volume | 37 |
creator | Palacios-Enriquez, A. Ponomaryov, V. Reyes-Reyes, R. Sadovnychiy, S. |
description | In this paper, a novel framework is presented for denoising images that have been corrupted by a mixture of additive and impulsive noise. The proposed method consists of three main stages: impulsive noise suppression, additive noise suppression and post-processing. In the first stage, a pixel that has been contaminated by impulsive noise is detected and filtered. In the next stage, filtering is based on sparse representation and 3D-processing using discrete cosine transform. Finally, the post-processing stage increases the filtering quality by using a bilateral filter and an edge restoration technique. Evaluation is performed using objective criteria (PSNR and SSIM) and subjective human visual perception to confirm the methods performance compared with state-of-the-art techniques. |
doi_str_mv | 10.1007/s00034-018-0820-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2031621532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031621532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-987de451e75e28442e895d37dce6210d102a60c89b84f1676b639f93575f23bd3</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmPwA7hF4hxwkrZJjmiCMWnAgSFxi9LWHZ22tiQr6v49mYrEiZMt-b1n-yPkmsMtB1B3AQBkwoBrBloAG07IhKeSs1QrfUomINRxwj_OyUUIGwBuEiMmZP7WOR-QrrD4bOqvHmnVerrYuTUGOmu977s9ljQ_0Od6iM3c9SHUrmGLXddvQ_2N9KWtA16Ss8ptA1791il5f3xYzZ7Y8nW-mN0vWSF5tmdGqxKTlKNKUegkEahNWkpVFpgJDiUH4TIotMl1UvFMZXkmTWVkqtJKyLyUU3Iz5na-jdeGvd20vW_iSisgrhDxaRFVfFQVvg3BY2U7X--cP1gO9sjLjrxs5GWPvOwQPWL0hKht1uj_kv83_QDdM2yc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031621532</pqid></control><display><type>article</type><title>Sparse Technique for Images Corrupted by Mixed Gaussian-Impulsive Noise</title><source>SpringerNature Journals</source><creator>Palacios-Enriquez, A. ; Ponomaryov, V. ; Reyes-Reyes, R. ; Sadovnychiy, S.</creator><creatorcontrib>Palacios-Enriquez, A. ; Ponomaryov, V. ; Reyes-Reyes, R. ; Sadovnychiy, S.</creatorcontrib><description>In this paper, a novel framework is presented for denoising images that have been corrupted by a mixture of additive and impulsive noise. The proposed method consists of three main stages: impulsive noise suppression, additive noise suppression and post-processing. In the first stage, a pixel that has been contaminated by impulsive noise is detected and filtered. In the next stage, filtering is based on sparse representation and 3D-processing using discrete cosine transform. Finally, the post-processing stage increases the filtering quality by using a bilateral filter and an edge restoration technique. Evaluation is performed using objective criteria (PSNR and SSIM) and subjective human visual perception to confirm the methods performance compared with state-of-the-art techniques.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-018-0820-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits and Systems ; Discrete cosine transform ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Filtration ; Instrumentation ; Noise ; Noise reduction ; Post-processing ; Restoration ; Signal,Image and Speech Processing ; Visual perception</subject><ispartof>Circuits, systems, and signal processing, 2018-12, Vol.37 (12), p.5389-5416</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Circuits, Systems, and Signal Processing is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-987de451e75e28442e895d37dce6210d102a60c89b84f1676b639f93575f23bd3</citedby><cites>FETCH-LOGICAL-c316t-987de451e75e28442e895d37dce6210d102a60c89b84f1676b639f93575f23bd3</cites><orcidid>0000-0002-4436-3642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-018-0820-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-018-0820-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Palacios-Enriquez, A.</creatorcontrib><creatorcontrib>Ponomaryov, V.</creatorcontrib><creatorcontrib>Reyes-Reyes, R.</creatorcontrib><creatorcontrib>Sadovnychiy, S.</creatorcontrib><title>Sparse Technique for Images Corrupted by Mixed Gaussian-Impulsive Noise</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>In this paper, a novel framework is presented for denoising images that have been corrupted by a mixture of additive and impulsive noise. The proposed method consists of three main stages: impulsive noise suppression, additive noise suppression and post-processing. In the first stage, a pixel that has been contaminated by impulsive noise is detected and filtered. In the next stage, filtering is based on sparse representation and 3D-processing using discrete cosine transform. Finally, the post-processing stage increases the filtering quality by using a bilateral filter and an edge restoration technique. Evaluation is performed using objective criteria (PSNR and SSIM) and subjective human visual perception to confirm the methods performance compared with state-of-the-art techniques.</description><subject>Circuits and Systems</subject><subject>Discrete cosine transform</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Filtration</subject><subject>Instrumentation</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Post-processing</subject><subject>Restoration</subject><subject>Signal,Image and Speech Processing</subject><subject>Visual perception</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFPwzAMhSMEEmPwA7hF4hxwkrZJjmiCMWnAgSFxi9LWHZ22tiQr6v49mYrEiZMt-b1n-yPkmsMtB1B3AQBkwoBrBloAG07IhKeSs1QrfUomINRxwj_OyUUIGwBuEiMmZP7WOR-QrrD4bOqvHmnVerrYuTUGOmu977s9ljQ_0Od6iM3c9SHUrmGLXddvQ_2N9KWtA16Ss8ptA1791il5f3xYzZ7Y8nW-mN0vWSF5tmdGqxKTlKNKUegkEahNWkpVFpgJDiUH4TIotMl1UvFMZXkmTWVkqtJKyLyUU3Iz5na-jdeGvd20vW_iSisgrhDxaRFVfFQVvg3BY2U7X--cP1gO9sjLjrxs5GWPvOwQPWL0hKht1uj_kv83_QDdM2yc</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Palacios-Enriquez, A.</creator><creator>Ponomaryov, V.</creator><creator>Reyes-Reyes, R.</creator><creator>Sadovnychiy, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4436-3642</orcidid></search><sort><creationdate>20181201</creationdate><title>Sparse Technique for Images Corrupted by Mixed Gaussian-Impulsive Noise</title><author>Palacios-Enriquez, A. ; Ponomaryov, V. ; Reyes-Reyes, R. ; Sadovnychiy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-987de451e75e28442e895d37dce6210d102a60c89b84f1676b639f93575f23bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Circuits and Systems</topic><topic>Discrete cosine transform</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Filtration</topic><topic>Instrumentation</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Post-processing</topic><topic>Restoration</topic><topic>Signal,Image and Speech Processing</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios-Enriquez, A.</creatorcontrib><creatorcontrib>Ponomaryov, V.</creatorcontrib><creatorcontrib>Reyes-Reyes, R.</creatorcontrib><creatorcontrib>Sadovnychiy, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios-Enriquez, A.</au><au>Ponomaryov, V.</au><au>Reyes-Reyes, R.</au><au>Sadovnychiy, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Technique for Images Corrupted by Mixed Gaussian-Impulsive Noise</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>37</volume><issue>12</issue><spage>5389</spage><epage>5416</epage><pages>5389-5416</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>In this paper, a novel framework is presented for denoising images that have been corrupted by a mixture of additive and impulsive noise. The proposed method consists of three main stages: impulsive noise suppression, additive noise suppression and post-processing. In the first stage, a pixel that has been contaminated by impulsive noise is detected and filtered. In the next stage, filtering is based on sparse representation and 3D-processing using discrete cosine transform. Finally, the post-processing stage increases the filtering quality by using a bilateral filter and an edge restoration technique. Evaluation is performed using objective criteria (PSNR and SSIM) and subjective human visual perception to confirm the methods performance compared with state-of-the-art techniques.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-018-0820-x</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-4436-3642</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-081X |
ispartof | Circuits, systems, and signal processing, 2018-12, Vol.37 (12), p.5389-5416 |
issn | 0278-081X 1531-5878 |
language | eng |
recordid | cdi_proquest_journals_2031621532 |
source | SpringerNature Journals |
subjects | Circuits and Systems Discrete cosine transform Electrical Engineering Electronics and Microelectronics Engineering Filtration Instrumentation Noise Noise reduction Post-processing Restoration Signal,Image and Speech Processing Visual perception |
title | Sparse Technique for Images Corrupted by Mixed Gaussian-Impulsive Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Technique%20for%20Images%20Corrupted%20by%20Mixed%20Gaussian-Impulsive%20Noise&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Palacios-Enriquez,%20A.&rft.date=2018-12-01&rft.volume=37&rft.issue=12&rft.spage=5389&rft.epage=5416&rft.pages=5389-5416&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-018-0820-x&rft_dat=%3Cproquest_cross%3E2031621532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031621532&rft_id=info:pmid/&rfr_iscdi=true |