Unified Approach for the Affine and Non-affine Models: An Empirical Analysis on the S&P 500 Volatility Dynamics
Being able to generate a volatility smile and adequately explain how it moves up and down in response to changes in risk, stochastic volatility models have replaced BS model. A single-factor volatility model can generate steep smiles or flat smiles at a given volatility level, but it cannot generate...
Gespeichert in:
Veröffentlicht in: | Computational economics 2019-04, Vol.53 (4), p.1421-1442 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1442 |
---|---|
container_issue | 4 |
container_start_page | 1421 |
container_title | Computational economics |
container_volume | 53 |
creator | Zhu, Shunwei Wang, Bo |
description | Being able to generate a volatility smile and adequately explain how it moves up and down in response to changes in risk, stochastic volatility models have replaced BS model. A single-factor volatility model can generate steep smiles or flat smiles at a given volatility level, but it cannot generate both for given parameters. In order to match the market implied volatility surface precisely, Grasselli introduced a 4/2 stochastic volatility model that includes the Heston model and the 3/2 model, performing as affine and non-affine model respectively. The present paper is intended to further investigate the 4/2 model, which falls into four parts. First, we apply Lewis’s fundamental transform approach instead of Grasselli’s method to deduce PDEs, which is intuitional and simple; Then, we use a result derived by Craddock and Lennox using Lie Symmetries theory for PDEs, and the results are more objective and reasonable; Finally, through adopting the data on S&P 500, we estimate the parameters of the 4/2 model; Furthermore, we investigate the 4/2 model along with the Heston model and the 3/2 model and compare their different performances. Our results illustrate that the 4/2 model outperforms the Heston and the 3/2 model for the fitting problem. |
doi_str_mv | 10.1007/s10614-018-9815-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2031620928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031620928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-21d7410aaca76d9fc384ce1611f542468044814be578486fe76e5c1a0f3278313</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEuXxA7hZQuJm2HWc2OFWlfKQykOCcrVMYlNXaVzs9NB_T0qQOHFazWpmtPsRcoZwiQDyKiEUKBigYqXCnKk9MsJcclaWUuyTEZRcMglleUiOUloCQI6cj0iYt955W9Pxeh2DqRbUhUi7haVj53xrqWlr-hRaZgb5GGrbpGs6bul0tfbRV6bphWm2ySca2p_o68ULzQHoe2hM5xvfbenNtjUrX6UTcuBMk-zp7zwm89vp2-SezZ7vHibjGasyhR3jWEuBYExlZFGXrt-KymKB6HLBRaFACIXiw-ZSCVU4KwubV2jAZVyqDLNjcj709l99bWzq9DJsYn9n0hwyLHgPRPUuHFxVDClF6_Q6-pWJW42gd1z1wFX3XPWOq95l-JBJvbf9tPGv-f_QN0xReGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031620928</pqid></control><display><type>article</type><title>Unified Approach for the Affine and Non-affine Models: An Empirical Analysis on the S&P 500 Volatility Dynamics</title><source>SpringerLink Journals</source><creator>Zhu, Shunwei ; Wang, Bo</creator><creatorcontrib>Zhu, Shunwei ; Wang, Bo</creatorcontrib><description>Being able to generate a volatility smile and adequately explain how it moves up and down in response to changes in risk, stochastic volatility models have replaced BS model. A single-factor volatility model can generate steep smiles or flat smiles at a given volatility level, but it cannot generate both for given parameters. In order to match the market implied volatility surface precisely, Grasselli introduced a 4/2 stochastic volatility model that includes the Heston model and the 3/2 model, performing as affine and non-affine model respectively. The present paper is intended to further investigate the 4/2 model, which falls into four parts. First, we apply Lewis’s fundamental transform approach instead of Grasselli’s method to deduce PDEs, which is intuitional and simple; Then, we use a result derived by Craddock and Lennox using Lie Symmetries theory for PDEs, and the results are more objective and reasonable; Finally, through adopting the data on S&P 500, we estimate the parameters of the 4/2 model; Furthermore, we investigate the 4/2 model along with the Heston model and the 3/2 model and compare their different performances. Our results illustrate that the 4/2 model outperforms the Heston and the 3/2 model for the fitting problem.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-018-9815-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral/Experimental Economics ; Computer Appl. in Social and Behavioral Sciences ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Empirical analysis ; Facial expressions ; Falls ; Math Applications in Computer Science ; Mathematical models ; Operations Research/Decision Theory ; Order parameters ; Parameter estimation ; Volatility</subject><ispartof>Computational economics, 2019-04, Vol.53 (4), p.1421-1442</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Computational Economics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-21d7410aaca76d9fc384ce1611f542468044814be578486fe76e5c1a0f3278313</citedby><cites>FETCH-LOGICAL-c381t-21d7410aaca76d9fc384ce1611f542468044814be578486fe76e5c1a0f3278313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-018-9815-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-018-9815-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Shunwei</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><title>Unified Approach for the Affine and Non-affine Models: An Empirical Analysis on the S&P 500 Volatility Dynamics</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>Being able to generate a volatility smile and adequately explain how it moves up and down in response to changes in risk, stochastic volatility models have replaced BS model. A single-factor volatility model can generate steep smiles or flat smiles at a given volatility level, but it cannot generate both for given parameters. In order to match the market implied volatility surface precisely, Grasselli introduced a 4/2 stochastic volatility model that includes the Heston model and the 3/2 model, performing as affine and non-affine model respectively. The present paper is intended to further investigate the 4/2 model, which falls into four parts. First, we apply Lewis’s fundamental transform approach instead of Grasselli’s method to deduce PDEs, which is intuitional and simple; Then, we use a result derived by Craddock and Lennox using Lie Symmetries theory for PDEs, and the results are more objective and reasonable; Finally, through adopting the data on S&P 500, we estimate the parameters of the 4/2 model; Furthermore, we investigate the 4/2 model along with the Heston model and the 3/2 model and compare their different performances. Our results illustrate that the 4/2 model outperforms the Heston and the 3/2 model for the fitting problem.</description><subject>Behavioral/Experimental Economics</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Empirical analysis</subject><subject>Facial expressions</subject><subject>Falls</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical models</subject><subject>Operations Research/Decision Theory</subject><subject>Order parameters</subject><subject>Parameter estimation</subject><subject>Volatility</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtPwzAQhC0EEuXxA7hZQuJm2HWc2OFWlfKQykOCcrVMYlNXaVzs9NB_T0qQOHFazWpmtPsRcoZwiQDyKiEUKBigYqXCnKk9MsJcclaWUuyTEZRcMglleUiOUloCQI6cj0iYt955W9Pxeh2DqRbUhUi7haVj53xrqWlr-hRaZgb5GGrbpGs6bul0tfbRV6bphWm2ySca2p_o68ULzQHoe2hM5xvfbenNtjUrX6UTcuBMk-zp7zwm89vp2-SezZ7vHibjGasyhR3jWEuBYExlZFGXrt-KymKB6HLBRaFACIXiw-ZSCVU4KwubV2jAZVyqDLNjcj709l99bWzq9DJsYn9n0hwyLHgPRPUuHFxVDClF6_Q6-pWJW42gd1z1wFX3XPWOq95l-JBJvbf9tPGv-f_QN0xReGk</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Zhu, Shunwei</creator><creator>Wang, Bo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190401</creationdate><title>Unified Approach for the Affine and Non-affine Models: An Empirical Analysis on the S&P 500 Volatility Dynamics</title><author>Zhu, Shunwei ; Wang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-21d7410aaca76d9fc384ce1611f542468044814be578486fe76e5c1a0f3278313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Behavioral/Experimental Economics</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Empirical analysis</topic><topic>Facial expressions</topic><topic>Falls</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical models</topic><topic>Operations Research/Decision Theory</topic><topic>Order parameters</topic><topic>Parameter estimation</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shunwei</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Shunwei</au><au>Wang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified Approach for the Affine and Non-affine Models: An Empirical Analysis on the S&P 500 Volatility Dynamics</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>53</volume><issue>4</issue><spage>1421</spage><epage>1442</epage><pages>1421-1442</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>Being able to generate a volatility smile and adequately explain how it moves up and down in response to changes in risk, stochastic volatility models have replaced BS model. A single-factor volatility model can generate steep smiles or flat smiles at a given volatility level, but it cannot generate both for given parameters. In order to match the market implied volatility surface precisely, Grasselli introduced a 4/2 stochastic volatility model that includes the Heston model and the 3/2 model, performing as affine and non-affine model respectively. The present paper is intended to further investigate the 4/2 model, which falls into four parts. First, we apply Lewis’s fundamental transform approach instead of Grasselli’s method to deduce PDEs, which is intuitional and simple; Then, we use a result derived by Craddock and Lennox using Lie Symmetries theory for PDEs, and the results are more objective and reasonable; Finally, through adopting the data on S&P 500, we estimate the parameters of the 4/2 model; Furthermore, we investigate the 4/2 model along with the Heston model and the 3/2 model and compare their different performances. Our results illustrate that the 4/2 model outperforms the Heston and the 3/2 model for the fitting problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-018-9815-8</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2019-04, Vol.53 (4), p.1421-1442 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_journals_2031620928 |
source | SpringerLink Journals |
subjects | Behavioral/Experimental Economics Computer Appl. in Social and Behavioral Sciences Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Empirical analysis Facial expressions Falls Math Applications in Computer Science Mathematical models Operations Research/Decision Theory Order parameters Parameter estimation Volatility |
title | Unified Approach for the Affine and Non-affine Models: An Empirical Analysis on the S&P 500 Volatility Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20Approach%20for%20the%20Affine%20and%20Non-affine%20Models:%20An%20Empirical%20Analysis%20on%20the%20S&P%20500%20Volatility%20Dynamics&rft.jtitle=Computational%20economics&rft.au=Zhu,%20Shunwei&rft.date=2019-04-01&rft.volume=53&rft.issue=4&rft.spage=1421&rft.epage=1442&rft.pages=1421-1442&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-018-9815-8&rft_dat=%3Cproquest_cross%3E2031620928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031620928&rft_id=info:pmid/&rfr_iscdi=true |