Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance

Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-04, Vol.1 (16), p.7544-7555
Hauptverfasser: Messina, Grazia M. L, Bocchinfuso, Gianfranco, Giamblanco, Nicoletta, Mazzuca, Claudia, Palleschi, Antonio, Marletta, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7555
container_issue 16
container_start_page 7544
container_title Nanoscale
container_volume 1
creator Messina, Grazia M. L
Bocchinfuso, Gianfranco
Giamblanco, Nicoletta
Mazzuca, Claudia
Palleschi, Antonio
Marletta, Giovanni
description Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare silica-based nanostructured surfaces with a reproducible, well-defined local curvature, consisting of ordered hexagonally packed arrays of curved hemispheres, from nanoparticles of different diameters (respectively 147 nm, 235 nm and 403 nm). The nanostructured surfaces have been made chemically homogeneous by partially embedding silica nanoparticles in poly(hydroxymethylsiloxane) films, further modified by means of UV-O 3 treatments. This paper has been focused on the experimental and theoretical study of laminin, taken as a model protein, to study the nanocurvature effects on the protein configuration at nanostructured surfaces. A simple model, based on the interplay of electrostatic interactions between the charged terminal domains of laminin and the nanocurved charged surfaces, closely reproduces the experimental findings. In particular, the model suggests that nanocurvature drives the orientation of rigid proteins by means of a "geometrical resonance" effect, involving the matching of dimensions, charge distribution and spatial arrangement of both adsorbed molecules and adsorbent nanostructures. Overall, the results pave the way to unravel the nanostructured surface effects on the intra- and inter-molecular organization processes of proteins. A "geometrical resonance effect" drives protein orientation at nanocurved surfaces, depending on the matching of dimensions and charge distribution.
doi_str_mv 10.1039/c8nr00037a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2031550609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031550609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6c7a508183ef348f36892797dc92d9d1095e85f64074ae76e4442fde681c64293</originalsourceid><addsrcrecordid>eNp90UtLAzEUBeAgiq2PjXsl4k4YzSSZPNyV4guKBdH1kCY3ZUqbqclMof_eqa115yqBfJzLPUHoIid3OWH63qoQCSFMmgPUp4STjDFJD_d3wXvoJKUZIUIzwY5Rj2rBpBa8j-w4VhCaKkzxMtYNVCHhyRoHE-rUxNY2bQSHUxu9sZAeMKwqB8ECrj022LZxZTYkc7FaQcBTqBfQxMqaOY6Q6i7Hwhk68mae4Hx3nqLPp8eP4Us2Gj-_DgejzHImmkxYaQqicsXAM648E0pTqaWzmjrtcqILUIUXnEhuQArgnFPvQKjcCk41O0U329xuk68WUlPO6jaGbmRJCcuLggiyUbdbZWOdUgRfLmO1MHFd5qTc9FkO1dv7T5-DDl_tItvJAtye_hbYgestiMnuX_8-pFw635nL_wz7Btjshio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031550609</pqid></control><display><type>article</type><title>Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Messina, Grazia M. L ; Bocchinfuso, Gianfranco ; Giamblanco, Nicoletta ; Mazzuca, Claudia ; Palleschi, Antonio ; Marletta, Giovanni</creator><creatorcontrib>Messina, Grazia M. L ; Bocchinfuso, Gianfranco ; Giamblanco, Nicoletta ; Mazzuca, Claudia ; Palleschi, Antonio ; Marletta, Giovanni</creatorcontrib><description>Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare silica-based nanostructured surfaces with a reproducible, well-defined local curvature, consisting of ordered hexagonally packed arrays of curved hemispheres, from nanoparticles of different diameters (respectively 147 nm, 235 nm and 403 nm). The nanostructured surfaces have been made chemically homogeneous by partially embedding silica nanoparticles in poly(hydroxymethylsiloxane) films, further modified by means of UV-O 3 treatments. This paper has been focused on the experimental and theoretical study of laminin, taken as a model protein, to study the nanocurvature effects on the protein configuration at nanostructured surfaces. A simple model, based on the interplay of electrostatic interactions between the charged terminal domains of laminin and the nanocurved charged surfaces, closely reproduces the experimental findings. In particular, the model suggests that nanocurvature drives the orientation of rigid proteins by means of a "geometrical resonance" effect, involving the matching of dimensions, charge distribution and spatial arrangement of both adsorbed molecules and adsorbent nanostructures. Overall, the results pave the way to unravel the nanostructured surface effects on the intra- and inter-molecular organization processes of proteins. A "geometrical resonance effect" drives protein orientation at nanocurved surfaces, depending on the matching of dimensions and charge distribution.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr00037a</identifier><identifier>PMID: 29637964</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Charge distribution ; Curvature ; Hemispheres ; Laminin ; Laminin - analysis ; Nanoparticles ; Nanostructure ; Nanostructures ; Proteins ; Proteins - analysis ; Silicon Dioxide ; Surface Properties ; Tissue engineering</subject><ispartof>Nanoscale, 2018-04, Vol.1 (16), p.7544-7555</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6c7a508183ef348f36892797dc92d9d1095e85f64074ae76e4442fde681c64293</citedby><cites>FETCH-LOGICAL-c436t-6c7a508183ef348f36892797dc92d9d1095e85f64074ae76e4442fde681c64293</cites><orcidid>0000-0002-8369-5789 ; 0000-0002-5556-7691 ; 0000-0002-1477-5726 ; 0000-0001-6144-4914 ; 0000-0002-3626-1873 ; 0000-0002-6929-9499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29637964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Messina, Grazia M. L</creatorcontrib><creatorcontrib>Bocchinfuso, Gianfranco</creatorcontrib><creatorcontrib>Giamblanco, Nicoletta</creatorcontrib><creatorcontrib>Mazzuca, Claudia</creatorcontrib><creatorcontrib>Palleschi, Antonio</creatorcontrib><creatorcontrib>Marletta, Giovanni</creatorcontrib><title>Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare silica-based nanostructured surfaces with a reproducible, well-defined local curvature, consisting of ordered hexagonally packed arrays of curved hemispheres, from nanoparticles of different diameters (respectively 147 nm, 235 nm and 403 nm). The nanostructured surfaces have been made chemically homogeneous by partially embedding silica nanoparticles in poly(hydroxymethylsiloxane) films, further modified by means of UV-O 3 treatments. This paper has been focused on the experimental and theoretical study of laminin, taken as a model protein, to study the nanocurvature effects on the protein configuration at nanostructured surfaces. A simple model, based on the interplay of electrostatic interactions between the charged terminal domains of laminin and the nanocurved charged surfaces, closely reproduces the experimental findings. In particular, the model suggests that nanocurvature drives the orientation of rigid proteins by means of a "geometrical resonance" effect, involving the matching of dimensions, charge distribution and spatial arrangement of both adsorbed molecules and adsorbent nanostructures. Overall, the results pave the way to unravel the nanostructured surface effects on the intra- and inter-molecular organization processes of proteins. A "geometrical resonance effect" drives protein orientation at nanocurved surfaces, depending on the matching of dimensions and charge distribution.</description><subject>Adsorption</subject><subject>Charge distribution</subject><subject>Curvature</subject><subject>Hemispheres</subject><subject>Laminin</subject><subject>Laminin - analysis</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Proteins</subject><subject>Proteins - analysis</subject><subject>Silicon Dioxide</subject><subject>Surface Properties</subject><subject>Tissue engineering</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90UtLAzEUBeAgiq2PjXsl4k4YzSSZPNyV4guKBdH1kCY3ZUqbqclMof_eqa115yqBfJzLPUHoIid3OWH63qoQCSFMmgPUp4STjDFJD_d3wXvoJKUZIUIzwY5Rj2rBpBa8j-w4VhCaKkzxMtYNVCHhyRoHE-rUxNY2bQSHUxu9sZAeMKwqB8ECrj022LZxZTYkc7FaQcBTqBfQxMqaOY6Q6i7Hwhk68mae4Hx3nqLPp8eP4Us2Gj-_DgejzHImmkxYaQqicsXAM648E0pTqaWzmjrtcqILUIUXnEhuQArgnFPvQKjcCk41O0U329xuk68WUlPO6jaGbmRJCcuLggiyUbdbZWOdUgRfLmO1MHFd5qTc9FkO1dv7T5-DDl_tItvJAtye_hbYgestiMnuX_8-pFw635nL_wz7Btjshio</recordid><startdate>20180426</startdate><enddate>20180426</enddate><creator>Messina, Grazia M. L</creator><creator>Bocchinfuso, Gianfranco</creator><creator>Giamblanco, Nicoletta</creator><creator>Mazzuca, Claudia</creator><creator>Palleschi, Antonio</creator><creator>Marletta, Giovanni</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8369-5789</orcidid><orcidid>https://orcid.org/0000-0002-5556-7691</orcidid><orcidid>https://orcid.org/0000-0002-1477-5726</orcidid><orcidid>https://orcid.org/0000-0001-6144-4914</orcidid><orcidid>https://orcid.org/0000-0002-3626-1873</orcidid><orcidid>https://orcid.org/0000-0002-6929-9499</orcidid></search><sort><creationdate>20180426</creationdate><title>Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance</title><author>Messina, Grazia M. L ; Bocchinfuso, Gianfranco ; Giamblanco, Nicoletta ; Mazzuca, Claudia ; Palleschi, Antonio ; Marletta, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6c7a508183ef348f36892797dc92d9d1095e85f64074ae76e4442fde681c64293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Charge distribution</topic><topic>Curvature</topic><topic>Hemispheres</topic><topic>Laminin</topic><topic>Laminin - analysis</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Proteins</topic><topic>Proteins - analysis</topic><topic>Silicon Dioxide</topic><topic>Surface Properties</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messina, Grazia M. L</creatorcontrib><creatorcontrib>Bocchinfuso, Gianfranco</creatorcontrib><creatorcontrib>Giamblanco, Nicoletta</creatorcontrib><creatorcontrib>Mazzuca, Claudia</creatorcontrib><creatorcontrib>Palleschi, Antonio</creatorcontrib><creatorcontrib>Marletta, Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messina, Grazia M. L</au><au>Bocchinfuso, Gianfranco</au><au>Giamblanco, Nicoletta</au><au>Mazzuca, Claudia</au><au>Palleschi, Antonio</au><au>Marletta, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-04-26</date><risdate>2018</risdate><volume>1</volume><issue>16</issue><spage>7544</spage><epage>7555</epage><pages>7544-7555</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Experimental and theoretical reports have shown that nanostructured surfaces have a dramatic effect on the amount of protein adsorbed and the conformational state and, in turn, on the performances of the related devices in tissue engineering strategies. Here we report an innovative method to prepare silica-based nanostructured surfaces with a reproducible, well-defined local curvature, consisting of ordered hexagonally packed arrays of curved hemispheres, from nanoparticles of different diameters (respectively 147 nm, 235 nm and 403 nm). The nanostructured surfaces have been made chemically homogeneous by partially embedding silica nanoparticles in poly(hydroxymethylsiloxane) films, further modified by means of UV-O 3 treatments. This paper has been focused on the experimental and theoretical study of laminin, taken as a model protein, to study the nanocurvature effects on the protein configuration at nanostructured surfaces. A simple model, based on the interplay of electrostatic interactions between the charged terminal domains of laminin and the nanocurved charged surfaces, closely reproduces the experimental findings. In particular, the model suggests that nanocurvature drives the orientation of rigid proteins by means of a "geometrical resonance" effect, involving the matching of dimensions, charge distribution and spatial arrangement of both adsorbed molecules and adsorbent nanostructures. Overall, the results pave the way to unravel the nanostructured surface effects on the intra- and inter-molecular organization processes of proteins. A "geometrical resonance effect" drives protein orientation at nanocurved surfaces, depending on the matching of dimensions and charge distribution.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29637964</pmid><doi>10.1039/c8nr00037a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8369-5789</orcidid><orcidid>https://orcid.org/0000-0002-5556-7691</orcidid><orcidid>https://orcid.org/0000-0002-1477-5726</orcidid><orcidid>https://orcid.org/0000-0001-6144-4914</orcidid><orcidid>https://orcid.org/0000-0002-3626-1873</orcidid><orcidid>https://orcid.org/0000-0002-6929-9499</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-04, Vol.1 (16), p.7544-7555
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2031550609
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Adsorption
Charge distribution
Curvature
Hemispheres
Laminin
Laminin - analysis
Nanoparticles
Nanostructure
Nanostructures
Proteins
Proteins - analysis
Silicon Dioxide
Surface Properties
Tissue engineering
title Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orienting%20proteins%20by%20nanostructured%20surfaces:%20evidence%20of%20a%20curvature-driven%20geometrical%20resonance&rft.jtitle=Nanoscale&rft.au=Messina,%20Grazia%20M.%20L&rft.date=2018-04-26&rft.volume=1&rft.issue=16&rft.spage=7544&rft.epage=7555&rft.pages=7544-7555&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr00037a&rft_dat=%3Cproquest_cross%3E2031550609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031550609&rft_id=info:pmid/29637964&rfr_iscdi=true