A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization

In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2018-03, Vol.34 (2), p.254-273
Hauptverfasser: Jian, Jin-bao, Tang, Chun-ming, Shi, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 2
container_start_page 254
container_title Acta Mathematicae Applicatae Sinica
container_volume 34
creator Jian, Jin-bao
Tang, Chun-ming
Shi, Lu
description In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.
doi_str_mv 10.1007/s10255-018-0755-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2031459965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031459965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-175db67e2b8f0ffb6612f58a150ee1e6b9525060aca174a01dafc33d6d65569c3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwscQ7sxrWTHEtFAakFDnDFchKbumrjYrv8PT0uQeLEaXa138xKQ8gpwjkCFBcBIec8AywzKNJQ7ZEBirSxiuX7ZAAoyqwSBTskRyEsAbBgohiQ5zGdahVsvdL0wdku0rmOC9fSdxsX9HLbtekwd601tlHRuo4a5-md68LauURMXPemP3YSole20y2930S7tl8_9DE5MGoV9MmvDsnT9OpxcpPN7q9vJ-NZ1jAUMcOCt7UodF6XBoyphcDc8FIhB61Ri7riOQcBqlFYjBRgq0zDWCtawbmoGjYkZ33uxrvXrQ5RLt3Wd-mlzIHhiFeV4InCnmq8C8FrIzferpX_lAhyV6Psa5SpRrmrUVbJk_eekNjuRfu_5P9N31Dqdbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031459965</pqid></control><display><type>article</type><title>A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Jian, Jin-bao ; Tang, Chun-ming ; Shi, Lu</creator><creatorcontrib>Jian, Jin-bao ; Tang, Chun-ming ; Shi, Lu</creatorcontrib><description>In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-018-0755-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Bundling ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2018-03, Vol.34 (2), p.254-273</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-175db67e2b8f0ffb6612f58a150ee1e6b9525060aca174a01dafc33d6d65569c3</citedby><cites>FETCH-LOGICAL-c316t-175db67e2b8f0ffb6612f58a150ee1e6b9525060aca174a01dafc33d6d65569c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-018-0755-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-018-0755-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Jian, Jin-bao</creatorcontrib><creatorcontrib>Tang, Chun-ming</creatorcontrib><creatorcontrib>Shi, Lu</creatorcontrib><title>A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><description>In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.</description><subject>Applications of Mathematics</subject><subject>Bundling</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwscQ7sxrWTHEtFAakFDnDFchKbumrjYrv8PT0uQeLEaXa138xKQ8gpwjkCFBcBIec8AywzKNJQ7ZEBirSxiuX7ZAAoyqwSBTskRyEsAbBgohiQ5zGdahVsvdL0wdku0rmOC9fSdxsX9HLbtekwd601tlHRuo4a5-md68LauURMXPemP3YSole20y2930S7tl8_9DE5MGoV9MmvDsnT9OpxcpPN7q9vJ-NZ1jAUMcOCt7UodF6XBoyphcDc8FIhB61Ri7riOQcBqlFYjBRgq0zDWCtawbmoGjYkZ33uxrvXrQ5RLt3Wd-mlzIHhiFeV4InCnmq8C8FrIzferpX_lAhyV6Psa5SpRrmrUVbJk_eekNjuRfu_5P9N31Dqdbc</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Jian, Jin-bao</creator><creator>Tang, Chun-ming</creator><creator>Shi, Lu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization</title><author>Jian, Jin-bao ; Tang, Chun-ming ; Shi, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-175db67e2b8f0ffb6612f58a150ee1e6b9525060aca174a01dafc33d6d65569c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Bundling</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian, Jin-bao</creatorcontrib><creatorcontrib>Tang, Chun-ming</creatorcontrib><creatorcontrib>Shi, Lu</creatorcontrib><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian, Jin-bao</au><au>Tang, Chun-ming</au><au>Shi, Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>34</volume><issue>2</issue><spage>254</spage><epage>273</epage><pages>254-273</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-018-0755-9</doi><tpages>20</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2018-03, Vol.34 (2), p.254-273
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_2031459965
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Bundling
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Feasible%20Point%20Method%20with%20Bundle%20Modification%20for%20Nonsmooth%20Convex%20Constrained%20Optimization&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Jian,%20Jin-bao&rft.date=2018-03-01&rft.volume=34&rft.issue=2&rft.spage=254&rft.epage=273&rft.pages=254-273&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-018-0755-9&rft_dat=%3Cproquest_cross%3E2031459965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031459965&rft_id=info:pmid/&rfr_iscdi=true