A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization
In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new one...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2018-03, Vol.34 (2), p.254-273 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | 2 |
container_start_page | 254 |
container_title | Acta Mathematicae Applicatae Sinica |
container_volume | 34 |
creator | Jian, Jin-bao Tang, Chun-ming Shi, Lu |
description | In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method. |
doi_str_mv | 10.1007/s10255-018-0755-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2031459965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031459965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-175db67e2b8f0ffb6612f58a150ee1e6b9525060aca174a01dafc33d6d65569c3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwscQ7sxrWTHEtFAakFDnDFchKbumrjYrv8PT0uQeLEaXa138xKQ8gpwjkCFBcBIec8AywzKNJQ7ZEBirSxiuX7ZAAoyqwSBTskRyEsAbBgohiQ5zGdahVsvdL0wdku0rmOC9fSdxsX9HLbtekwd601tlHRuo4a5-md68LauURMXPemP3YSole20y2930S7tl8_9DE5MGoV9MmvDsnT9OpxcpPN7q9vJ-NZ1jAUMcOCt7UodF6XBoyphcDc8FIhB61Ri7riOQcBqlFYjBRgq0zDWCtawbmoGjYkZ33uxrvXrQ5RLt3Wd-mlzIHhiFeV4InCnmq8C8FrIzferpX_lAhyV6Psa5SpRrmrUVbJk_eekNjuRfu_5P9N31Dqdbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031459965</pqid></control><display><type>article</type><title>A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Jian, Jin-bao ; Tang, Chun-ming ; Shi, Lu</creator><creatorcontrib>Jian, Jin-bao ; Tang, Chun-ming ; Shi, Lu</creatorcontrib><description>In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-018-0755-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Bundling ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2018-03, Vol.34 (2), p.254-273</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-175db67e2b8f0ffb6612f58a150ee1e6b9525060aca174a01dafc33d6d65569c3</citedby><cites>FETCH-LOGICAL-c316t-175db67e2b8f0ffb6612f58a150ee1e6b9525060aca174a01dafc33d6d65569c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-018-0755-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-018-0755-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Jian, Jin-bao</creatorcontrib><creatorcontrib>Tang, Chun-ming</creatorcontrib><creatorcontrib>Shi, Lu</creatorcontrib><title>A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><description>In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.</description><subject>Applications of Mathematics</subject><subject>Bundling</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwscQ7sxrWTHEtFAakFDnDFchKbumrjYrv8PT0uQeLEaXa138xKQ8gpwjkCFBcBIec8AywzKNJQ7ZEBirSxiuX7ZAAoyqwSBTskRyEsAbBgohiQ5zGdahVsvdL0wdku0rmOC9fSdxsX9HLbtekwd601tlHRuo4a5-md68LauURMXPemP3YSole20y2930S7tl8_9DE5MGoV9MmvDsnT9OpxcpPN7q9vJ-NZ1jAUMcOCt7UodF6XBoyphcDc8FIhB61Ri7riOQcBqlFYjBRgq0zDWCtawbmoGjYkZ33uxrvXrQ5RLt3Wd-mlzIHhiFeV4InCnmq8C8FrIzferpX_lAhyV6Psa5SpRrmrUVbJk_eekNjuRfu_5P9N31Dqdbc</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Jian, Jin-bao</creator><creator>Tang, Chun-ming</creator><creator>Shi, Lu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization</title><author>Jian, Jin-bao ; Tang, Chun-ming ; Shi, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-175db67e2b8f0ffb6612f58a150ee1e6b9525060aca174a01dafc33d6d65569c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Bundling</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian, Jin-bao</creatorcontrib><creatorcontrib>Tang, Chun-ming</creatorcontrib><creatorcontrib>Shi, Lu</creatorcontrib><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian, Jin-bao</au><au>Tang, Chun-ming</au><au>Shi, Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>34</volume><issue>2</issue><spage>254</spage><epage>273</epage><pages>254-273</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-018-0755-9</doi><tpages>20</tpages><edition>English series</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9673 |
ispartof | Acta Mathematicae Applicatae Sinica, 2018-03, Vol.34 (2), p.254-273 |
issn | 0168-9673 1618-3932 |
language | eng |
recordid | cdi_proquest_journals_2031459965 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Bundling Math Applications in Computer Science Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical |
title | A Feasible Point Method with Bundle Modification for Nonsmooth Convex Constrained Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Feasible%20Point%20Method%20with%20Bundle%20Modification%20for%20Nonsmooth%20Convex%20Constrained%20Optimization&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Jian,%20Jin-bao&rft.date=2018-03-01&rft.volume=34&rft.issue=2&rft.spage=254&rft.epage=273&rft.pages=254-273&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-018-0755-9&rft_dat=%3Cproquest_cross%3E2031459965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031459965&rft_id=info:pmid/&rfr_iscdi=true |