Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering
The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object....
Gespeichert in:
Veröffentlicht in: | Nature photonics 2018-05, Vol.12 (5), p.277-283 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 5 |
container_start_page | 277 |
container_title | Nature photonics |
container_volume | 12 |
creator | Jeong, Seungwon Lee, Ye-Ryoung Choi, Wonjun Kang, Sungsam Hong, Jin Hee Park, Jin-Sung Lim, Yong-Sik Park, Hong-Gyu Choi, Wonshik |
description | The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
The use of a time-gated reflection matrix of a scattering medium, in particular via using singular value decomposition and injecting light into the largest time-gated eigenchannel, can lead to a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. |
doi_str_mv | 10.1038/s41566-018-0120-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2031404692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031404692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-98697a9be50ada798f11fdbe2e25b3debc64991e6ad4c02f6828985ea51cff6a3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9UkbbPJURZXhQUveg5pOulm7T-T9NBvb0sX9-RhmGF47w3zQ-iekkdKUvEUMppznhAqpmIkkRdoRTeZTDIh08u_WeTX6CaEIyF5Khlboe9dZ4bg2gp3FteuOkQMLfhqxK4NrgSscTA6RvCzpoHSDQ0uRmy6NvqurudtPACOroGk0hFK3Ax1dH0Np7iz_RZdWV0HuDv1NfravXxu35L9x-v79nmfmJTymEjB5UbLAnKiS72RwlJqywIYsLxISygMz6SkwHWZGcIsF0xIkYPOqbGW63SNHpbc3nc_A4Sojt3g2-mkYiSlGcm4ZJOKLirjuxA8WNV712g_KkrUzFQtTNXEVM1MlZw8bPGEfn4I_Dn5f9Mv0L570A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031404692</pqid></control><display><type>article</type><title>Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Jeong, Seungwon ; Lee, Ye-Ryoung ; Choi, Wonjun ; Kang, Sungsam ; Hong, Jin Hee ; Park, Jin-Sung ; Lim, Yong-Sik ; Park, Hong-Gyu ; Choi, Wonshik</creator><creatorcontrib>Jeong, Seungwon ; Lee, Ye-Ryoung ; Choi, Wonjun ; Kang, Sungsam ; Hong, Jin Hee ; Park, Jin-Sung ; Lim, Yong-Sik ; Park, Hong-Gyu ; Choi, Wonshik</creatorcontrib><description>The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
The use of a time-gated reflection matrix of a scattering medium, in particular via using singular value decomposition and injecting light into the largest time-gated eigenchannel, can lead to a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-018-0120-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1076 ; 639/624/1107/510 ; Applied and Technical Physics ; Diffusion ; Energy ; Flight time ; Imaging ; Light ; Light reflection ; Light scattering ; Physics ; Physics and Astronomy ; Quantum Physics</subject><ispartof>Nature photonics, 2018-05, Vol.12 (5), p.277-283</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-98697a9be50ada798f11fdbe2e25b3debc64991e6ad4c02f6828985ea51cff6a3</citedby><cites>FETCH-LOGICAL-c316t-98697a9be50ada798f11fdbe2e25b3debc64991e6ad4c02f6828985ea51cff6a3</cites><orcidid>0000-0002-5146-4716 ; 0000-0002-2447-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-018-0120-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-018-0120-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jeong, Seungwon</creatorcontrib><creatorcontrib>Lee, Ye-Ryoung</creatorcontrib><creatorcontrib>Choi, Wonjun</creatorcontrib><creatorcontrib>Kang, Sungsam</creatorcontrib><creatorcontrib>Hong, Jin Hee</creatorcontrib><creatorcontrib>Park, Jin-Sung</creatorcontrib><creatorcontrib>Lim, Yong-Sik</creatorcontrib><creatorcontrib>Park, Hong-Gyu</creatorcontrib><creatorcontrib>Choi, Wonshik</creatorcontrib><title>Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
The use of a time-gated reflection matrix of a scattering medium, in particular via using singular value decomposition and injecting light into the largest time-gated eigenchannel, can lead to a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases.</description><subject>639/624/1075/1076</subject><subject>639/624/1107/510</subject><subject>Applied and Technical Physics</subject><subject>Diffusion</subject><subject>Energy</subject><subject>Flight time</subject><subject>Imaging</subject><subject>Light</subject><subject>Light reflection</subject><subject>Light scattering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9UkbbPJURZXhQUveg5pOulm7T-T9NBvb0sX9-RhmGF47w3zQ-iekkdKUvEUMppznhAqpmIkkRdoRTeZTDIh08u_WeTX6CaEIyF5Khlboe9dZ4bg2gp3FteuOkQMLfhqxK4NrgSscTA6RvCzpoHSDQ0uRmy6NvqurudtPACOroGk0hFK3Ax1dH0Np7iz_RZdWV0HuDv1NfravXxu35L9x-v79nmfmJTymEjB5UbLAnKiS72RwlJqywIYsLxISygMz6SkwHWZGcIsF0xIkYPOqbGW63SNHpbc3nc_A4Sojt3g2-mkYiSlGcm4ZJOKLirjuxA8WNV712g_KkrUzFQtTNXEVM1MlZw8bPGEfn4I_Dn5f9Mv0L570A</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Jeong, Seungwon</creator><creator>Lee, Ye-Ryoung</creator><creator>Choi, Wonjun</creator><creator>Kang, Sungsam</creator><creator>Hong, Jin Hee</creator><creator>Park, Jin-Sung</creator><creator>Lim, Yong-Sik</creator><creator>Park, Hong-Gyu</creator><creator>Choi, Wonshik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5146-4716</orcidid><orcidid>https://orcid.org/0000-0002-2447-189X</orcidid></search><sort><creationdate>20180501</creationdate><title>Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering</title><author>Jeong, Seungwon ; Lee, Ye-Ryoung ; Choi, Wonjun ; Kang, Sungsam ; Hong, Jin Hee ; Park, Jin-Sung ; Lim, Yong-Sik ; Park, Hong-Gyu ; Choi, Wonshik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-98697a9be50ada798f11fdbe2e25b3debc64991e6ad4c02f6828985ea51cff6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624/1075/1076</topic><topic>639/624/1107/510</topic><topic>Applied and Technical Physics</topic><topic>Diffusion</topic><topic>Energy</topic><topic>Flight time</topic><topic>Imaging</topic><topic>Light</topic><topic>Light reflection</topic><topic>Light scattering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Seungwon</creatorcontrib><creatorcontrib>Lee, Ye-Ryoung</creatorcontrib><creatorcontrib>Choi, Wonjun</creatorcontrib><creatorcontrib>Kang, Sungsam</creatorcontrib><creatorcontrib>Hong, Jin Hee</creatorcontrib><creatorcontrib>Park, Jin-Sung</creatorcontrib><creatorcontrib>Lim, Yong-Sik</creatorcontrib><creatorcontrib>Park, Hong-Gyu</creatorcontrib><creatorcontrib>Choi, Wonshik</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Seungwon</au><au>Lee, Ye-Ryoung</au><au>Choi, Wonjun</au><au>Kang, Sungsam</au><au>Hong, Jin Hee</au><au>Park, Jin-Sung</au><au>Lim, Yong-Sik</au><au>Park, Hong-Gyu</au><au>Choi, Wonshik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>12</volume><issue>5</issue><spage>277</spage><epage>283</epage><pages>277-283</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
The use of a time-gated reflection matrix of a scattering medium, in particular via using singular value decomposition and injecting light into the largest time-gated eigenchannel, can lead to a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-018-0120-9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5146-4716</orcidid><orcidid>https://orcid.org/0000-0002-2447-189X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2018-05, Vol.12 (5), p.277-283 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2031404692 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/624/1075/1076 639/624/1107/510 Applied and Technical Physics Diffusion Energy Flight time Imaging Light Light reflection Light scattering Physics Physics and Astronomy Quantum Physics |
title | Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Focusing%20of%20light%20energy%20inside%20a%20scattering%20medium%20by%20controlling%20the%20time-gated%20multiple%20light%20scattering&rft.jtitle=Nature%20photonics&rft.au=Jeong,%20Seungwon&rft.date=2018-05-01&rft.volume=12&rft.issue=5&rft.spage=277&rft.epage=283&rft.pages=277-283&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-018-0120-9&rft_dat=%3Cproquest_cross%3E2031404692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031404692&rft_id=info:pmid/&rfr_iscdi=true |