The linkage between geopotential height and monthly precipitation in Iran
This paper investigates the linkage between large-scale atmospheric circulation and monthly precipitation during November to April over Iran. Canonical correlation analysis (CCA) is used to set up the statistical linkage between the 850 hPa geopotential height large-scale circulation and monthly pre...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2019-04, Vol.136 (1-2), p.221-236 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 1-2 |
container_start_page | 221 |
container_title | Theoretical and applied climatology |
container_volume | 136 |
creator | Shirvani, Amin Fadaei, Amir Sabetan Landman, Willem A. |
description | This paper investigates the linkage between large-scale atmospheric circulation and monthly precipitation during November to April over Iran. Canonical correlation analysis (CCA) is used to set up the statistical linkage between the 850 hPa geopotential height large-scale circulation and monthly precipitation over Iran for the period 1968–2010. The monthly precipitation dataset for 50 synoptic stations distributed in different climate regions of Iran is considered as the response variable in the CCA. The monthly geopotential height reanalysis dataset over an area between 10° N and 60° N and from 20° E to 80° E is utilized as the explanatory variable in the CCA. Principal component analysis (PCA) as a pre-filter is used for data reduction for both explanatory and response variables before applying CCA. The optimal number of principal components and canonical variables to be retained in the CCA equations is determined using the highest average cross-validated Kendall’s tau value. The 850 hPa geopotential height pattern over the Red Sea, Saudi Arabia, and Persian Gulf is found to be the major pattern related to Iranian monthly precipitation. The Pearson correlation between the area averaged of the observed and predicted precipitation over the study area for Jan, Feb, March, April, November, and December months are statistically significant at the 5% significance level and are 0.78, 0.80, 0.82, 0.74, 0.79, and 0.61, respectively. The relative operating characteristic (ROC) indicates that the highest scores for the above- and below-normal precipitation categories are, respectively, for February and April and the lowest scores found for December. |
doi_str_mv | 10.1007/s00704-018-2479-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2031164178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A582143033</galeid><sourcerecordid>A582143033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-70cc5a5f09d456a43ccb2bf69708fbcaebdfef0a2a4294d307e9c91eee93204c3</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMoOK7-AG8BTx56rXxMp3NcFj8GFgRdwVtIpys9WXuSNsmg--_N0oLsQQpSEJ4nVeQl5DWDSwag3pV2gOyADR2XSnfyCdkxKWQn5SCekh0wpTqlh-_PyYtS7gCA973akcPtEekS4g87Ix2x_kKMdMa0poqxBrvQI4b5WKmNEz2lWI_LPV0zurCGamtIkYZID9nGl-SZt0vBV3_7Bfn24f3t9afu5vPHw_XVTefEoGunwLm93XvQk9z3VgrnRj76XisY_OgsjpNHD5ZbybWcBCjUTjNE1IKDdOKCvNneXXP6ecZSzV0659hGGg6CsV4yNTTqcqNmu6AJ0aearWs14Sm4FNGHdn-1H3j7JRCiCW8fCY2p-LvO9lyKOXz98phlG-tyKiWjN2sOJ5vvDQPzEIfZ4jAtDvMQh5HN4ZtTGhtnzP_W_r_0B1HJjLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031164178</pqid></control><display><type>article</type><title>The linkage between geopotential height and monthly precipitation in Iran</title><source>SpringerLink Journals</source><creator>Shirvani, Amin ; Fadaei, Amir Sabetan ; Landman, Willem A.</creator><creatorcontrib>Shirvani, Amin ; Fadaei, Amir Sabetan ; Landman, Willem A.</creatorcontrib><description>This paper investigates the linkage between large-scale atmospheric circulation and monthly precipitation during November to April over Iran. Canonical correlation analysis (CCA) is used to set up the statistical linkage between the 850 hPa geopotential height large-scale circulation and monthly precipitation over Iran for the period 1968–2010. The monthly precipitation dataset for 50 synoptic stations distributed in different climate regions of Iran is considered as the response variable in the CCA. The monthly geopotential height reanalysis dataset over an area between 10° N and 60° N and from 20° E to 80° E is utilized as the explanatory variable in the CCA. Principal component analysis (PCA) as a pre-filter is used for data reduction for both explanatory and response variables before applying CCA. The optimal number of principal components and canonical variables to be retained in the CCA equations is determined using the highest average cross-validated Kendall’s tau value. The 850 hPa geopotential height pattern over the Red Sea, Saudi Arabia, and Persian Gulf is found to be the major pattern related to Iranian monthly precipitation. The Pearson correlation between the area averaged of the observed and predicted precipitation over the study area for Jan, Feb, March, April, November, and December months are statistically significant at the 5% significance level and are 0.78, 0.80, 0.82, 0.74, 0.79, and 0.61, respectively. The relative operating characteristic (ROC) indicates that the highest scores for the above- and below-normal precipitation categories are, respectively, for February and April and the lowest scores found for December.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-018-2479-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Aquatic Pollution ; Area ; Atmospheric circulation ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Climate ; Climate science ; Climatology ; Correlation analysis ; Data reduction ; Dynamic height ; Earth and Environmental Science ; Earth Sciences ; Geopotential ; Geopotential height ; Mathematical models ; Monthly ; Monthly precipitation ; Original Paper ; Precipitation ; Precipitation (Meteorology) ; Principal components analysis ; Statistical analysis ; Waste Water Technology ; Water Management ; Water Pollution Control ; Weather forecasting</subject><ispartof>Theoretical and applied climatology, 2019-04, Vol.136 (1-2), p.221-236</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Theoretical and Applied Climatology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-70cc5a5f09d456a43ccb2bf69708fbcaebdfef0a2a4294d307e9c91eee93204c3</citedby><cites>FETCH-LOGICAL-c389t-70cc5a5f09d456a43ccb2bf69708fbcaebdfef0a2a4294d307e9c91eee93204c3</cites><orcidid>0000-0002-9048-3717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-018-2479-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-018-2479-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shirvani, Amin</creatorcontrib><creatorcontrib>Fadaei, Amir Sabetan</creatorcontrib><creatorcontrib>Landman, Willem A.</creatorcontrib><title>The linkage between geopotential height and monthly precipitation in Iran</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>This paper investigates the linkage between large-scale atmospheric circulation and monthly precipitation during November to April over Iran. Canonical correlation analysis (CCA) is used to set up the statistical linkage between the 850 hPa geopotential height large-scale circulation and monthly precipitation over Iran for the period 1968–2010. The monthly precipitation dataset for 50 synoptic stations distributed in different climate regions of Iran is considered as the response variable in the CCA. The monthly geopotential height reanalysis dataset over an area between 10° N and 60° N and from 20° E to 80° E is utilized as the explanatory variable in the CCA. Principal component analysis (PCA) as a pre-filter is used for data reduction for both explanatory and response variables before applying CCA. The optimal number of principal components and canonical variables to be retained in the CCA equations is determined using the highest average cross-validated Kendall’s tau value. The 850 hPa geopotential height pattern over the Red Sea, Saudi Arabia, and Persian Gulf is found to be the major pattern related to Iranian monthly precipitation. The Pearson correlation between the area averaged of the observed and predicted precipitation over the study area for Jan, Feb, March, April, November, and December months are statistically significant at the 5% significance level and are 0.78, 0.80, 0.82, 0.74, 0.79, and 0.61, respectively. The relative operating characteristic (ROC) indicates that the highest scores for the above- and below-normal precipitation categories are, respectively, for February and April and the lowest scores found for December.</description><subject>Analysis</subject><subject>Aquatic Pollution</subject><subject>Area</subject><subject>Atmospheric circulation</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Climate</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Correlation analysis</subject><subject>Data reduction</subject><subject>Dynamic height</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geopotential</subject><subject>Geopotential height</subject><subject>Mathematical models</subject><subject>Monthly</subject><subject>Monthly precipitation</subject><subject>Original Paper</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Principal components analysis</subject><subject>Statistical analysis</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Weather forecasting</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU2LFDEQhoMoOK7-AG8BTx56rXxMp3NcFj8GFgRdwVtIpys9WXuSNsmg--_N0oLsQQpSEJ4nVeQl5DWDSwag3pV2gOyADR2XSnfyCdkxKWQn5SCekh0wpTqlh-_PyYtS7gCA973akcPtEekS4g87Ix2x_kKMdMa0poqxBrvQI4b5WKmNEz2lWI_LPV0zurCGamtIkYZID9nGl-SZt0vBV3_7Bfn24f3t9afu5vPHw_XVTefEoGunwLm93XvQk9z3VgrnRj76XisY_OgsjpNHD5ZbybWcBCjUTjNE1IKDdOKCvNneXXP6ecZSzV0659hGGg6CsV4yNTTqcqNmu6AJ0aearWs14Sm4FNGHdn-1H3j7JRCiCW8fCY2p-LvO9lyKOXz98phlG-tyKiWjN2sOJ5vvDQPzEIfZ4jAtDvMQh5HN4ZtTGhtnzP_W_r_0B1HJjLo</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Shirvani, Amin</creator><creator>Fadaei, Amir Sabetan</creator><creator>Landman, Willem A.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9048-3717</orcidid></search><sort><creationdate>20190401</creationdate><title>The linkage between geopotential height and monthly precipitation in Iran</title><author>Shirvani, Amin ; Fadaei, Amir Sabetan ; Landman, Willem A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-70cc5a5f09d456a43ccb2bf69708fbcaebdfef0a2a4294d307e9c91eee93204c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Aquatic Pollution</topic><topic>Area</topic><topic>Atmospheric circulation</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Climate</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Correlation analysis</topic><topic>Data reduction</topic><topic>Dynamic height</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geopotential</topic><topic>Geopotential height</topic><topic>Mathematical models</topic><topic>Monthly</topic><topic>Monthly precipitation</topic><topic>Original Paper</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Principal components analysis</topic><topic>Statistical analysis</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirvani, Amin</creatorcontrib><creatorcontrib>Fadaei, Amir Sabetan</creatorcontrib><creatorcontrib>Landman, Willem A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirvani, Amin</au><au>Fadaei, Amir Sabetan</au><au>Landman, Willem A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The linkage between geopotential height and monthly precipitation in Iran</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>136</volume><issue>1-2</issue><spage>221</spage><epage>236</epage><pages>221-236</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>This paper investigates the linkage between large-scale atmospheric circulation and monthly precipitation during November to April over Iran. Canonical correlation analysis (CCA) is used to set up the statistical linkage between the 850 hPa geopotential height large-scale circulation and monthly precipitation over Iran for the period 1968–2010. The monthly precipitation dataset for 50 synoptic stations distributed in different climate regions of Iran is considered as the response variable in the CCA. The monthly geopotential height reanalysis dataset over an area between 10° N and 60° N and from 20° E to 80° E is utilized as the explanatory variable in the CCA. Principal component analysis (PCA) as a pre-filter is used for data reduction for both explanatory and response variables before applying CCA. The optimal number of principal components and canonical variables to be retained in the CCA equations is determined using the highest average cross-validated Kendall’s tau value. The 850 hPa geopotential height pattern over the Red Sea, Saudi Arabia, and Persian Gulf is found to be the major pattern related to Iranian monthly precipitation. The Pearson correlation between the area averaged of the observed and predicted precipitation over the study area for Jan, Feb, March, April, November, and December months are statistically significant at the 5% significance level and are 0.78, 0.80, 0.82, 0.74, 0.79, and 0.61, respectively. The relative operating characteristic (ROC) indicates that the highest scores for the above- and below-normal precipitation categories are, respectively, for February and April and the lowest scores found for December.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-018-2479-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9048-3717</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2019-04, Vol.136 (1-2), p.221-236 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2031164178 |
source | SpringerLink Journals |
subjects | Analysis Aquatic Pollution Area Atmospheric circulation Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climate Climate science Climatology Correlation analysis Data reduction Dynamic height Earth and Environmental Science Earth Sciences Geopotential Geopotential height Mathematical models Monthly Monthly precipitation Original Paper Precipitation Precipitation (Meteorology) Principal components analysis Statistical analysis Waste Water Technology Water Management Water Pollution Control Weather forecasting |
title | The linkage between geopotential height and monthly precipitation in Iran |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20linkage%20between%20geopotential%20height%20and%20monthly%20precipitation%20in%20Iran&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Shirvani,%20Amin&rft.date=2019-04-01&rft.volume=136&rft.issue=1-2&rft.spage=221&rft.epage=236&rft.pages=221-236&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-018-2479-4&rft_dat=%3Cgale_proqu%3EA582143033%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031164178&rft_id=info:pmid/&rft_galeid=A582143033&rfr_iscdi=true |