Nonnegative Entire Bounded Solutions to some Semilinear Equations Involving the Fractional Laplacian

We establish necessary and sufficient conditions under which the fractional semilinear elliptic equation Δ α 2 u = ρ ( x ) φ ( u ) admits nonnegative nontrivial bounded solutions in the whole space ℝ N .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2018-05, Vol.48 (4), p.495-513
Hauptverfasser: Chrouda, Mohamed Ben, Fredj, Mahmoud Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 513
container_issue 4
container_start_page 495
container_title Potential analysis
container_volume 48
creator Chrouda, Mohamed Ben
Fredj, Mahmoud Ben
description We establish necessary and sufficient conditions under which the fractional semilinear elliptic equation Δ α 2 u = ρ ( x ) φ ( u ) admits nonnegative nontrivial bounded solutions in the whole space ℝ N .
doi_str_mv 10.1007/s11118-017-9645-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2030999259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030999259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d5efa2e9e2e4ee3c1429f3ae8e7fe797197d7e98ca70c20b31a66729b530c2c53</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAczR_upvNUUurhaKHKngLaXa2pmyTNskW_PZuWcGTcxlm5r3H8EPoltF7Rql8SKyvilAmiSonBZFnaMQKyYni6vMcjajiJeElZZfoKqUtpZRLWY1Q_Rq8h43J7gh45rOLgJ9C52uo8Sq0XXbBJ5wDTmEHeAU71zoPJuLZoTPDceGPoT06v8H5C_A8GnvamxYvzb411hl_jS4a0ya4-e1j9DGfvU9fyPLteTF9XBIrWJlJXUBjOCjgMAEQlk24aoSBCmQDUkmmZC1BVdZIajldC2bKUnK1LkQ_20KM0d2Qu4_h0EHKehu62L-SNKeCKqV4oXoVG1Q2hpQiNHof3c7Eb82oPsHUA0zdw9QnmFr2Hj54Uq_1G4h_yf-bfgDMjHjX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030999259</pqid></control><display><type>article</type><title>Nonnegative Entire Bounded Solutions to some Semilinear Equations Involving the Fractional Laplacian</title><source>SpringerLink (Online service)</source><creator>Chrouda, Mohamed Ben ; Fredj, Mahmoud Ben</creator><creatorcontrib>Chrouda, Mohamed Ben ; Fredj, Mahmoud Ben</creatorcontrib><description>We establish necessary and sufficient conditions under which the fractional semilinear elliptic equation Δ α 2 u = ρ ( x ) φ ( u ) admits nonnegative nontrivial bounded solutions in the whole space ℝ N .</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-017-9645-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Functional Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Potential Theory ; Probability Theory and Stochastic Processes</subject><ispartof>Potential analysis, 2018-05, Vol.48 (4), p.495-513</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d5efa2e9e2e4ee3c1429f3ae8e7fe797197d7e98ca70c20b31a66729b530c2c53</citedby><cites>FETCH-LOGICAL-c316t-d5efa2e9e2e4ee3c1429f3ae8e7fe797197d7e98ca70c20b31a66729b530c2c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-017-9645-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-017-9645-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chrouda, Mohamed Ben</creatorcontrib><creatorcontrib>Fredj, Mahmoud Ben</creatorcontrib><title>Nonnegative Entire Bounded Solutions to some Semilinear Equations Involving the Fractional Laplacian</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>We establish necessary and sufficient conditions under which the fractional semilinear elliptic equation Δ α 2 u = ρ ( x ) φ ( u ) admits nonnegative nontrivial bounded solutions in the whole space ℝ N .</description><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAczR_upvNUUurhaKHKngLaXa2pmyTNskW_PZuWcGTcxlm5r3H8EPoltF7Rql8SKyvilAmiSonBZFnaMQKyYni6vMcjajiJeElZZfoKqUtpZRLWY1Q_Rq8h43J7gh45rOLgJ9C52uo8Sq0XXbBJ5wDTmEHeAU71zoPJuLZoTPDceGPoT06v8H5C_A8GnvamxYvzb411hl_jS4a0ya4-e1j9DGfvU9fyPLteTF9XBIrWJlJXUBjOCjgMAEQlk24aoSBCmQDUkmmZC1BVdZIajldC2bKUnK1LkQ_20KM0d2Qu4_h0EHKehu62L-SNKeCKqV4oXoVG1Q2hpQiNHof3c7Eb82oPsHUA0zdw9QnmFr2Hj54Uq_1G4h_yf-bfgDMjHjX</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Chrouda, Mohamed Ben</creator><creator>Fredj, Mahmoud Ben</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180501</creationdate><title>Nonnegative Entire Bounded Solutions to some Semilinear Equations Involving the Fractional Laplacian</title><author>Chrouda, Mohamed Ben ; Fredj, Mahmoud Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d5efa2e9e2e4ee3c1429f3ae8e7fe797197d7e98ca70c20b31a66729b530c2c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrouda, Mohamed Ben</creatorcontrib><creatorcontrib>Fredj, Mahmoud Ben</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrouda, Mohamed Ben</au><au>Fredj, Mahmoud Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonnegative Entire Bounded Solutions to some Semilinear Equations Involving the Fractional Laplacian</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>48</volume><issue>4</issue><spage>495</spage><epage>513</epage><pages>495-513</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>We establish necessary and sufficient conditions under which the fractional semilinear elliptic equation Δ α 2 u = ρ ( x ) φ ( u ) admits nonnegative nontrivial bounded solutions in the whole space ℝ N .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-017-9645-7</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2018-05, Vol.48 (4), p.495-513
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_2030999259
source SpringerLink (Online service)
subjects Functional Analysis
Geometry
Mathematics
Mathematics and Statistics
Potential Theory
Probability Theory and Stochastic Processes
title Nonnegative Entire Bounded Solutions to some Semilinear Equations Involving the Fractional Laplacian
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonnegative%20Entire%20Bounded%20Solutions%20to%20some%20Semilinear%20Equations%20Involving%20the%20Fractional%20Laplacian&rft.jtitle=Potential%20analysis&rft.au=Chrouda,%20Mohamed%20Ben&rft.date=2018-05-01&rft.volume=48&rft.issue=4&rft.spage=495&rft.epage=513&rft.pages=495-513&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-017-9645-7&rft_dat=%3Cproquest_cross%3E2030999259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030999259&rft_id=info:pmid/&rfr_iscdi=true