The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-04, Vol.8 (12), p.n/a
Hauptverfasser: Gasparini, Nicola, Wadsworth, Andrew, Moser, Maximilian, Baran, Derya, McCulloch, Iain, Brabec, Christoph J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced energy materials
container_volume 8
creator Gasparini, Nicola
Wadsworth, Andrew
Moser, Maximilian
Baran, Derya
McCulloch, Iain
Brabec, Christoph J.
description Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene‐based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene‐based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA‐based composites that enable devices without early performance loss, thus resembling so‐called burn‐in free devices. In this contribution, the authors review the current understanding of the relevant photophysical processes, as well as the superior light and thermal stability of efficient nonfullerene acceptor small molecules in comparison to fullerenes‐based composites.
doi_str_mv 10.1002/aenm.201703298
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2030714249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030714249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4238-d5ee16b855a0eabb9fe7270191ced99ab03b70eefdcdfc144663fb22e6f486c3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiQS5em7iebFfdLdHJCgmoCZwr93uNCyWLba7Mfx7l2D06FzeOTzvTPIgdEvJmBLC7g00-zEjNCecqeICDaikIpOFIJe_O2fXaJTSjvQjFCWcD9D7Zgv4bXtMtU04OLzeG-_xKniwnQc8tRYObYgJuxDx3Lna1tC02DQVXrem7JGHzn_gBbQQw65rbFuHBq-DNxHPwPt0g66c8QlGPzlEm8f5ZrbIlq9Pz7PpMrOC8SKrJgBUlsVkYgiYslQOcpYTqqiFSilTEl7mBMBVtnKWCiEldyVjIJ0opOVDdHc-e4jhs4PU6l3oYtN_1IxwklPBhOqp8ZmyMaQUwelDrPcmHjUl-uRRnzzqX499QZ0LX7WH4z-0ns5fVn_db2twd4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030714249</pqid></control><display><type>article</type><title>The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells</title><source>Access via Wiley Online Library</source><creator>Gasparini, Nicola ; Wadsworth, Andrew ; Moser, Maximilian ; Baran, Derya ; McCulloch, Iain ; Brabec, Christoph J.</creator><creatorcontrib>Gasparini, Nicola ; Wadsworth, Andrew ; Moser, Maximilian ; Baran, Derya ; McCulloch, Iain ; Brabec, Christoph J.</creatorcontrib><description>Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene‐based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene‐based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA‐based composites that enable devices without early performance loss, thus resembling so‐called burn‐in free devices. In this contribution, the authors review the current understanding of the relevant photophysical processes, as well as the superior light and thermal stability of efficient nonfullerene acceptor small molecules in comparison to fullerenes‐based composites.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201703298</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>charge recombination ; Charge transport ; Composite materials ; Energy conversion efficiency ; Fullerenes ; Heterojunctions ; nonfullerene acceptors ; organic solar cells ; photophysics ; Photovoltaic cells ; Solar cells ; stability ; Thermal stability</subject><ispartof>Advanced energy materials, 2018-04, Vol.8 (12), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4238-d5ee16b855a0eabb9fe7270191ced99ab03b70eefdcdfc144663fb22e6f486c3</citedby><cites>FETCH-LOGICAL-c4238-d5ee16b855a0eabb9fe7270191ced99ab03b70eefdcdfc144663fb22e6f486c3</cites><orcidid>0000-0002-3226-8234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201703298$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201703298$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gasparini, Nicola</creatorcontrib><creatorcontrib>Wadsworth, Andrew</creatorcontrib><creatorcontrib>Moser, Maximilian</creatorcontrib><creatorcontrib>Baran, Derya</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><title>The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells</title><title>Advanced energy materials</title><description>Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene‐based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene‐based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA‐based composites that enable devices without early performance loss, thus resembling so‐called burn‐in free devices. In this contribution, the authors review the current understanding of the relevant photophysical processes, as well as the superior light and thermal stability of efficient nonfullerene acceptor small molecules in comparison to fullerenes‐based composites.</description><subject>charge recombination</subject><subject>Charge transport</subject><subject>Composite materials</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Heterojunctions</subject><subject>nonfullerene acceptors</subject><subject>organic solar cells</subject><subject>photophysics</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>stability</subject><subject>Thermal stability</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiQS5em7iebFfdLdHJCgmoCZwr93uNCyWLba7Mfx7l2D06FzeOTzvTPIgdEvJmBLC7g00-zEjNCecqeICDaikIpOFIJe_O2fXaJTSjvQjFCWcD9D7Zgv4bXtMtU04OLzeG-_xKniwnQc8tRYObYgJuxDx3Lna1tC02DQVXrem7JGHzn_gBbQQw65rbFuHBq-DNxHPwPt0g66c8QlGPzlEm8f5ZrbIlq9Pz7PpMrOC8SKrJgBUlsVkYgiYslQOcpYTqqiFSilTEl7mBMBVtnKWCiEldyVjIJ0opOVDdHc-e4jhs4PU6l3oYtN_1IxwklPBhOqp8ZmyMaQUwelDrPcmHjUl-uRRnzzqX499QZ0LX7WH4z-0ns5fVn_db2twd4g</recordid><startdate>20180425</startdate><enddate>20180425</enddate><creator>Gasparini, Nicola</creator><creator>Wadsworth, Andrew</creator><creator>Moser, Maximilian</creator><creator>Baran, Derya</creator><creator>McCulloch, Iain</creator><creator>Brabec, Christoph J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3226-8234</orcidid></search><sort><creationdate>20180425</creationdate><title>The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells</title><author>Gasparini, Nicola ; Wadsworth, Andrew ; Moser, Maximilian ; Baran, Derya ; McCulloch, Iain ; Brabec, Christoph J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4238-d5ee16b855a0eabb9fe7270191ced99ab03b70eefdcdfc144663fb22e6f486c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>charge recombination</topic><topic>Charge transport</topic><topic>Composite materials</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Heterojunctions</topic><topic>nonfullerene acceptors</topic><topic>organic solar cells</topic><topic>photophysics</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>stability</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gasparini, Nicola</creatorcontrib><creatorcontrib>Wadsworth, Andrew</creatorcontrib><creatorcontrib>Moser, Maximilian</creatorcontrib><creatorcontrib>Baran, Derya</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gasparini, Nicola</au><au>Wadsworth, Andrew</au><au>Moser, Maximilian</au><au>Baran, Derya</au><au>McCulloch, Iain</au><au>Brabec, Christoph J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2018-04-25</date><risdate>2018</risdate><volume>8</volume><issue>12</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene‐based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene‐based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA‐based composites that enable devices without early performance loss, thus resembling so‐called burn‐in free devices. In this contribution, the authors review the current understanding of the relevant photophysical processes, as well as the superior light and thermal stability of efficient nonfullerene acceptor small molecules in comparison to fullerenes‐based composites.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201703298</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3226-8234</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-04, Vol.8 (12), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2030714249
source Access via Wiley Online Library
subjects charge recombination
Charge transport
Composite materials
Energy conversion efficiency
Fullerenes
Heterojunctions
nonfullerene acceptors
organic solar cells
photophysics
Photovoltaic cells
Solar cells
stability
Thermal stability
title The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Physics%20of%20Small%20Molecule%20Acceptors%20for%20Efficient%20and%20Stable%20Bulk%20Heterojunction%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Gasparini,%20Nicola&rft.date=2018-04-25&rft.volume=8&rft.issue=12&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201703298&rft_dat=%3Cproquest_cross%3E2030714249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030714249&rft_id=info:pmid/&rfr_iscdi=true