Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel

Abrasive water jet machining (AWJM) is a popular method used for cutting purposes. It uses a thin jet of ultra-high pressure water and abrasive slurry to cut the material and the cutting is mainly by erosion. The purpose of this paper is to investigate the effect of AWJM parameters on the cutting of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018-05, Vol.40 (5), p.1-13, Article 259
Hauptverfasser: A. Dumbhare, Parikshit, Dubey, Shikha, V. Deshpande, Yogesh, Andhare, Atul B., Barve, Purushottam S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 5
container_start_page 1
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 40
creator A. Dumbhare, Parikshit
Dubey, Shikha
V. Deshpande, Yogesh
Andhare, Atul B.
Barve, Purushottam S.
description Abrasive water jet machining (AWJM) is a popular method used for cutting purposes. It uses a thin jet of ultra-high pressure water and abrasive slurry to cut the material and the cutting is mainly by erosion. The purpose of this paper is to investigate the effect of AWJM parameters on the cutting of mild steel and to optimize the process parameters. The process parameters considered for investigation are traverse speed, abrasive flow rate and standoff distance. The subsequent response parameters that have been determined are surface roughness and kerf taper angle. Taguchi L 9 orthogonal array has been used to design the experiments. ANOVA is used to decide the influencing process parameters. 3D surface plots are presented for interaction effects of input process parameters. The study revealed that traverse speed is the prime factor influencing surface roughness and kerf taper angle followed by stand-off distance and abrasive flow rate. Response models are verified on the basis of estimation capability. Later on, multi-objective optimization using response surface methodology has been used for minimizing surface roughness and kerf taper angle which further resulted in composite desirability of 0.9497. The optimum values of abrasive flow rate, standoff distance and traverse speed are found to be 420 g/min, 3 mm and 85 mm/min, respectively. To validate the results, confirmation test is performed using optimum cutting parameters. It showed 9.17 and 8.57% error for surface roughness and kerf taper angle.
doi_str_mv 10.1007/s40430-018-1186-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2030253364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030253364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-27ef0006e2c2ea1281f9315932faa0b4041bb0ddb4f409ad4ed7ba2cb9a29ce43</originalsourceid><addsrcrecordid>eNp1kEtLxTAQhYsoeL36A9wFXEcnSZ9LufgCxY2uQ9pOelPb5pqkioL_3dYKrlzNg_OdYU4UnTI4ZwDZhY8hFkCB5ZSxPKXJXrRiOaRUpAXbn_o0y2mSZ_lhdOR9CyB4kiar6OvB1th1ZmiIGmrSj10w1JYtVsG8IbG7YHrzqYKxA7Ga-NFpVSFxdmy2A3r_Q72g0ySoHbppbDokZiCqdMrPFu8qTPsWA-lVtTXDfGp2CojdcXSgVefx5Leuo-frq6fNLb1_vLnbXN7TSiRFoDxDDQAp8oqjYjxnuhAsKQTXSkE5vc7KEuq6jHUMhapjrLNS8aosFC8qjMU6Olt8d86-juiDbO3ohumk5CCAJ0Kks4otqspZ7x1quXOmV-5DMpBzynJJWU4pyzllmUwMXxg_aYcG3Z_z_9A370iCCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030253364</pqid></control><display><type>article</type><title>Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel</title><source>SpringerLink Journals - AutoHoldings</source><creator>A. Dumbhare, Parikshit ; Dubey, Shikha ; V. Deshpande, Yogesh ; Andhare, Atul B. ; Barve, Purushottam S.</creator><creatorcontrib>A. Dumbhare, Parikshit ; Dubey, Shikha ; V. Deshpande, Yogesh ; Andhare, Atul B. ; Barve, Purushottam S.</creatorcontrib><description>Abrasive water jet machining (AWJM) is a popular method used for cutting purposes. It uses a thin jet of ultra-high pressure water and abrasive slurry to cut the material and the cutting is mainly by erosion. The purpose of this paper is to investigate the effect of AWJM parameters on the cutting of mild steel and to optimize the process parameters. The process parameters considered for investigation are traverse speed, abrasive flow rate and standoff distance. The subsequent response parameters that have been determined are surface roughness and kerf taper angle. Taguchi L 9 orthogonal array has been used to design the experiments. ANOVA is used to decide the influencing process parameters. 3D surface plots are presented for interaction effects of input process parameters. The study revealed that traverse speed is the prime factor influencing surface roughness and kerf taper angle followed by stand-off distance and abrasive flow rate. Response models are verified on the basis of estimation capability. Later on, multi-objective optimization using response surface methodology has been used for minimizing surface roughness and kerf taper angle which further resulted in composite desirability of 0.9497. The optimum values of abrasive flow rate, standoff distance and traverse speed are found to be 420 g/min, 3 mm and 85 mm/min, respectively. To validate the results, confirmation test is performed using optimum cutting parameters. It showed 9.17 and 8.57% error for surface roughness and kerf taper angle.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-018-1186-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abrasive cutting ; Abrasive machining ; Cutting parameters ; Engineering ; Erosion ; Flow velocity ; Kerf ; Low carbon steels ; Mathematical models ; Mechanical Engineering ; Multiple objective analysis ; Optimization ; Process parameters ; Response surface methodology ; Slurries ; Surface roughness ; Technical Paper</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018-05, Vol.40 (5), p.1-13, Article 259</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-27ef0006e2c2ea1281f9315932faa0b4041bb0ddb4f409ad4ed7ba2cb9a29ce43</citedby><cites>FETCH-LOGICAL-c359t-27ef0006e2c2ea1281f9315932faa0b4041bb0ddb4f409ad4ed7ba2cb9a29ce43</cites><orcidid>0000-0003-0704-1959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-018-1186-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-018-1186-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>A. Dumbhare, Parikshit</creatorcontrib><creatorcontrib>Dubey, Shikha</creatorcontrib><creatorcontrib>V. Deshpande, Yogesh</creatorcontrib><creatorcontrib>Andhare, Atul B.</creatorcontrib><creatorcontrib>Barve, Purushottam S.</creatorcontrib><title>Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>Abrasive water jet machining (AWJM) is a popular method used for cutting purposes. It uses a thin jet of ultra-high pressure water and abrasive slurry to cut the material and the cutting is mainly by erosion. The purpose of this paper is to investigate the effect of AWJM parameters on the cutting of mild steel and to optimize the process parameters. The process parameters considered for investigation are traverse speed, abrasive flow rate and standoff distance. The subsequent response parameters that have been determined are surface roughness and kerf taper angle. Taguchi L 9 orthogonal array has been used to design the experiments. ANOVA is used to decide the influencing process parameters. 3D surface plots are presented for interaction effects of input process parameters. The study revealed that traverse speed is the prime factor influencing surface roughness and kerf taper angle followed by stand-off distance and abrasive flow rate. Response models are verified on the basis of estimation capability. Later on, multi-objective optimization using response surface methodology has been used for minimizing surface roughness and kerf taper angle which further resulted in composite desirability of 0.9497. The optimum values of abrasive flow rate, standoff distance and traverse speed are found to be 420 g/min, 3 mm and 85 mm/min, respectively. To validate the results, confirmation test is performed using optimum cutting parameters. It showed 9.17 and 8.57% error for surface roughness and kerf taper angle.</description><subject>Abrasive cutting</subject><subject>Abrasive machining</subject><subject>Cutting parameters</subject><subject>Engineering</subject><subject>Erosion</subject><subject>Flow velocity</subject><subject>Kerf</subject><subject>Low carbon steels</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Response surface methodology</subject><subject>Slurries</subject><subject>Surface roughness</subject><subject>Technical Paper</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxTAQhYsoeL36A9wFXEcnSZ9LufgCxY2uQ9pOelPb5pqkioL_3dYKrlzNg_OdYU4UnTI4ZwDZhY8hFkCB5ZSxPKXJXrRiOaRUpAXbn_o0y2mSZ_lhdOR9CyB4kiar6OvB1th1ZmiIGmrSj10w1JYtVsG8IbG7YHrzqYKxA7Ga-NFpVSFxdmy2A3r_Q72g0ySoHbppbDokZiCqdMrPFu8qTPsWA-lVtTXDfGp2CojdcXSgVefx5Leuo-frq6fNLb1_vLnbXN7TSiRFoDxDDQAp8oqjYjxnuhAsKQTXSkE5vc7KEuq6jHUMhapjrLNS8aosFC8qjMU6Olt8d86-juiDbO3ohumk5CCAJ0Kks4otqspZ7x1quXOmV-5DMpBzynJJWU4pyzllmUwMXxg_aYcG3Z_z_9A370iCCw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>A. Dumbhare, Parikshit</creator><creator>Dubey, Shikha</creator><creator>V. Deshpande, Yogesh</creator><creator>Andhare, Atul B.</creator><creator>Barve, Purushottam S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0704-1959</orcidid></search><sort><creationdate>20180501</creationdate><title>Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel</title><author>A. Dumbhare, Parikshit ; Dubey, Shikha ; V. Deshpande, Yogesh ; Andhare, Atul B. ; Barve, Purushottam S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-27ef0006e2c2ea1281f9315932faa0b4041bb0ddb4f409ad4ed7ba2cb9a29ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abrasive cutting</topic><topic>Abrasive machining</topic><topic>Cutting parameters</topic><topic>Engineering</topic><topic>Erosion</topic><topic>Flow velocity</topic><topic>Kerf</topic><topic>Low carbon steels</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Response surface methodology</topic><topic>Slurries</topic><topic>Surface roughness</topic><topic>Technical Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>A. Dumbhare, Parikshit</creatorcontrib><creatorcontrib>Dubey, Shikha</creatorcontrib><creatorcontrib>V. Deshpande, Yogesh</creatorcontrib><creatorcontrib>Andhare, Atul B.</creatorcontrib><creatorcontrib>Barve, Purushottam S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A. Dumbhare, Parikshit</au><au>Dubey, Shikha</au><au>V. Deshpande, Yogesh</au><au>Andhare, Atul B.</au><au>Barve, Purushottam S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>40</volume><issue>5</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>259</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>Abrasive water jet machining (AWJM) is a popular method used for cutting purposes. It uses a thin jet of ultra-high pressure water and abrasive slurry to cut the material and the cutting is mainly by erosion. The purpose of this paper is to investigate the effect of AWJM parameters on the cutting of mild steel and to optimize the process parameters. The process parameters considered for investigation are traverse speed, abrasive flow rate and standoff distance. The subsequent response parameters that have been determined are surface roughness and kerf taper angle. Taguchi L 9 orthogonal array has been used to design the experiments. ANOVA is used to decide the influencing process parameters. 3D surface plots are presented for interaction effects of input process parameters. The study revealed that traverse speed is the prime factor influencing surface roughness and kerf taper angle followed by stand-off distance and abrasive flow rate. Response models are verified on the basis of estimation capability. Later on, multi-objective optimization using response surface methodology has been used for minimizing surface roughness and kerf taper angle which further resulted in composite desirability of 0.9497. The optimum values of abrasive flow rate, standoff distance and traverse speed are found to be 420 g/min, 3 mm and 85 mm/min, respectively. To validate the results, confirmation test is performed using optimum cutting parameters. It showed 9.17 and 8.57% error for surface roughness and kerf taper angle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-018-1186-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0704-1959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018-05, Vol.40 (5), p.1-13, Article 259
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2030253364
source SpringerLink Journals - AutoHoldings
subjects Abrasive cutting
Abrasive machining
Cutting parameters
Engineering
Erosion
Flow velocity
Kerf
Low carbon steels
Mathematical models
Mechanical Engineering
Multiple objective analysis
Optimization
Process parameters
Response surface methodology
Slurries
Surface roughness
Technical Paper
title Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20and%20multi-objective%20optimization%20of%20surface%20roughness%20and%20kerf%20taper%20angle%20in%20abrasive%20water%20jet%20machining%20of%20steel&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=A.%20Dumbhare,%20Parikshit&rft.date=2018-05-01&rft.volume=40&rft.issue=5&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=259&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-018-1186-5&rft_dat=%3Cproquest_cross%3E2030253364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030253364&rft_id=info:pmid/&rfr_iscdi=true