Future changes in extreme precipitation indices over Korea
ABSTRACT In this study, the regional climate of the Korean Peninsula is dynamically downscaled using a high‐resolution regional climate model forced by two representative concentration pathway scenarios of Hadley Centre Global Environmental Model version 2‐Atmosphere and Ocean (HadGEM2‐AO) using mul...
Gespeichert in:
Veröffentlicht in: | International journal of climatology 2018-04, Vol.38 (S1), p.e862-e874 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e874 |
---|---|
container_issue | S1 |
container_start_page | e862 |
container_title | International journal of climatology |
container_volume | 38 |
creator | Kim, Gayoung Cha, Dong‐Hyun Park, Changyong Lee, Gil Jin, Chun‐Sil Lee, Dong‐Kyou Suh, Myoung‐Seok Ahn, Joong‐Bae Min, Seung‐Ki Hong, Song‐You Kang, Hyun‐Suk |
description | ABSTRACT
In this study, the regional climate of the Korean Peninsula is dynamically downscaled using a high‐resolution regional climate model forced by two representative concentration pathway scenarios of Hadley Centre Global Environmental Model version 2‐Atmosphere and Ocean (HadGEM2‐AO) using multiple regional climate models. Changes in extreme precipitation indices are investigated. Through the evaluation of the present climate, a multi‐model ensemble reasonably reproduces the long‐term climatology of extreme precipitation indices over South Korea despite some systematic errors. Both mean and extreme precipitation intensities for 80 years in the future (2021–2100) increase compared to those of the present. However, the increasing rates of indices related to precipitation intensities are different according to sub‐period, season, and emission scenarios. Mean and extreme precipitation intensities of the future climate increase during the summer when most extreme precipitation events occur over the Korean Peninsula. Also, abnormal extreme precipitation can increase during future summers due to increasing variances of indices related to extreme precipitation intensity. Increasing extreme summer precipitation over South Korea is proportional to the increases in convective precipitation compared to non‐convective precipitation. This indicates that future changes in summer precipitation, with regard to intensity and frequency, over South Korea, among representative concentration pathway scenarios, are more related to a change in convective instability rather than synoptic condition.
This figure shows multi‐model ensemble (MME) rate of change in six indices between future (2021–2100) and present (1981–2005) scenarios (%). Dashed lines denote the areas where all RCMs reproduce the same sign of indices. Overall extreme precipitation intensity as well as mean precipitation intensity increases in the future. Also, model results from the five RCMs are consistent in the regions with a high rate of change for the indices, implying that the changes in indices are highly reliable in that region. |
doi_str_mv | 10.1002/joc.5414 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2030180841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030180841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3594-6f8febddf0d8ba913d126dee50f73ef8511f4fa105f1c6484b1eefc6b301d9e23</originalsourceid><addsrcrecordid>eNp10E1PwzAMBuAIgcQYSPyESly4dNj9WsINTYyvSbvAOWoTBzJtTUla2P49GePKyQc_tuWXsUuECQJkNyunJmWBxREbIYhpCsD5MRsBFyLlBfJTdhbCCgCEwGrEbudDP3hK1EfdvlNIbJvQtve0oaTzpGxn-7q3ro0NbVUE7ot88uI81efsxNTrQBd_dcze5vevs8d0sXx4mt0tUpWXokgrww01WhvQvKkF5hqzShOVYKY5GV4imsLUCKVBVRW8aJDIqKrJAbWgLB-zq8PezrvPgUIvV27wbTwpM4iIQ_wrquuDUt6F4MnIzttN7XcSQe6TiVNK7pOJND3Qb7um3b9OPi9nv_4HHbZkjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030180841</pqid></control><display><type>article</type><title>Future changes in extreme precipitation indices over Korea</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Gayoung ; Cha, Dong‐Hyun ; Park, Changyong ; Lee, Gil ; Jin, Chun‐Sil ; Lee, Dong‐Kyou ; Suh, Myoung‐Seok ; Ahn, Joong‐Bae ; Min, Seung‐Ki ; Hong, Song‐You ; Kang, Hyun‐Suk</creator><creatorcontrib>Kim, Gayoung ; Cha, Dong‐Hyun ; Park, Changyong ; Lee, Gil ; Jin, Chun‐Sil ; Lee, Dong‐Kyou ; Suh, Myoung‐Seok ; Ahn, Joong‐Bae ; Min, Seung‐Ki ; Hong, Song‐You ; Kang, Hyun‐Suk</creatorcontrib><description>ABSTRACT
In this study, the regional climate of the Korean Peninsula is dynamically downscaled using a high‐resolution regional climate model forced by two representative concentration pathway scenarios of Hadley Centre Global Environmental Model version 2‐Atmosphere and Ocean (HadGEM2‐AO) using multiple regional climate models. Changes in extreme precipitation indices are investigated. Through the evaluation of the present climate, a multi‐model ensemble reasonably reproduces the long‐term climatology of extreme precipitation indices over South Korea despite some systematic errors. Both mean and extreme precipitation intensities for 80 years in the future (2021–2100) increase compared to those of the present. However, the increasing rates of indices related to precipitation intensities are different according to sub‐period, season, and emission scenarios. Mean and extreme precipitation intensities of the future climate increase during the summer when most extreme precipitation events occur over the Korean Peninsula. Also, abnormal extreme precipitation can increase during future summers due to increasing variances of indices related to extreme precipitation intensity. Increasing extreme summer precipitation over South Korea is proportional to the increases in convective precipitation compared to non‐convective precipitation. This indicates that future changes in summer precipitation, with regard to intensity and frequency, over South Korea, among representative concentration pathway scenarios, are more related to a change in convective instability rather than synoptic condition.
This figure shows multi‐model ensemble (MME) rate of change in six indices between future (2021–2100) and present (1981–2005) scenarios (%). Dashed lines denote the areas where all RCMs reproduce the same sign of indices. Overall extreme precipitation intensity as well as mean precipitation intensity increases in the future. Also, model results from the five RCMs are consistent in the regions with a high rate of change for the indices, implying that the changes in indices are highly reliable in that region.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.5414</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Atmospheric models ; Climate ; Climate change ; Climate models ; Climatic indexes ; Climatology ; Convective instability ; Convective precipitation ; Environmental modeling ; Evaluation ; extreme precipitation ; Extreme weather ; Future climates ; HadGEM2‐AO ; Instability ; multi‐RCM ; Ocean models ; Precipitation ; Precipitation intensity ; Rainfall ; Rainfall intensity ; regional climate model ; Regional climate models ; Regional climates ; South Korea ; Stability ; STARDEX ; Summer ; Summer precipitation ; Systematic errors</subject><ispartof>International journal of climatology, 2018-04, Vol.38 (S1), p.e862-e874</ispartof><rights>2018 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3594-6f8febddf0d8ba913d126dee50f73ef8511f4fa105f1c6484b1eefc6b301d9e23</citedby><cites>FETCH-LOGICAL-c3594-6f8febddf0d8ba913d126dee50f73ef8511f4fa105f1c6484b1eefc6b301d9e23</cites><orcidid>0000-0001-5053-6741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjoc.5414$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjoc.5414$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kim, Gayoung</creatorcontrib><creatorcontrib>Cha, Dong‐Hyun</creatorcontrib><creatorcontrib>Park, Changyong</creatorcontrib><creatorcontrib>Lee, Gil</creatorcontrib><creatorcontrib>Jin, Chun‐Sil</creatorcontrib><creatorcontrib>Lee, Dong‐Kyou</creatorcontrib><creatorcontrib>Suh, Myoung‐Seok</creatorcontrib><creatorcontrib>Ahn, Joong‐Bae</creatorcontrib><creatorcontrib>Min, Seung‐Ki</creatorcontrib><creatorcontrib>Hong, Song‐You</creatorcontrib><creatorcontrib>Kang, Hyun‐Suk</creatorcontrib><title>Future changes in extreme precipitation indices over Korea</title><title>International journal of climatology</title><description>ABSTRACT
In this study, the regional climate of the Korean Peninsula is dynamically downscaled using a high‐resolution regional climate model forced by two representative concentration pathway scenarios of Hadley Centre Global Environmental Model version 2‐Atmosphere and Ocean (HadGEM2‐AO) using multiple regional climate models. Changes in extreme precipitation indices are investigated. Through the evaluation of the present climate, a multi‐model ensemble reasonably reproduces the long‐term climatology of extreme precipitation indices over South Korea despite some systematic errors. Both mean and extreme precipitation intensities for 80 years in the future (2021–2100) increase compared to those of the present. However, the increasing rates of indices related to precipitation intensities are different according to sub‐period, season, and emission scenarios. Mean and extreme precipitation intensities of the future climate increase during the summer when most extreme precipitation events occur over the Korean Peninsula. Also, abnormal extreme precipitation can increase during future summers due to increasing variances of indices related to extreme precipitation intensity. Increasing extreme summer precipitation over South Korea is proportional to the increases in convective precipitation compared to non‐convective precipitation. This indicates that future changes in summer precipitation, with regard to intensity and frequency, over South Korea, among representative concentration pathway scenarios, are more related to a change in convective instability rather than synoptic condition.
This figure shows multi‐model ensemble (MME) rate of change in six indices between future (2021–2100) and present (1981–2005) scenarios (%). Dashed lines denote the areas where all RCMs reproduce the same sign of indices. Overall extreme precipitation intensity as well as mean precipitation intensity increases in the future. Also, model results from the five RCMs are consistent in the regions with a high rate of change for the indices, implying that the changes in indices are highly reliable in that region.</description><subject>Atmospheric models</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic indexes</subject><subject>Climatology</subject><subject>Convective instability</subject><subject>Convective precipitation</subject><subject>Environmental modeling</subject><subject>Evaluation</subject><subject>extreme precipitation</subject><subject>Extreme weather</subject><subject>Future climates</subject><subject>HadGEM2‐AO</subject><subject>Instability</subject><subject>multi‐RCM</subject><subject>Ocean models</subject><subject>Precipitation</subject><subject>Precipitation intensity</subject><subject>Rainfall</subject><subject>Rainfall intensity</subject><subject>regional climate model</subject><subject>Regional climate models</subject><subject>Regional climates</subject><subject>South Korea</subject><subject>Stability</subject><subject>STARDEX</subject><subject>Summer</subject><subject>Summer precipitation</subject><subject>Systematic errors</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1PwzAMBuAIgcQYSPyESly4dNj9WsINTYyvSbvAOWoTBzJtTUla2P49GePKyQc_tuWXsUuECQJkNyunJmWBxREbIYhpCsD5MRsBFyLlBfJTdhbCCgCEwGrEbudDP3hK1EfdvlNIbJvQtve0oaTzpGxn-7q3ro0NbVUE7ot88uI81efsxNTrQBd_dcze5vevs8d0sXx4mt0tUpWXokgrww01WhvQvKkF5hqzShOVYKY5GV4imsLUCKVBVRW8aJDIqKrJAbWgLB-zq8PezrvPgUIvV27wbTwpM4iIQ_wrquuDUt6F4MnIzttN7XcSQe6TiVNK7pOJND3Qb7um3b9OPi9nv_4HHbZkjg</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Kim, Gayoung</creator><creator>Cha, Dong‐Hyun</creator><creator>Park, Changyong</creator><creator>Lee, Gil</creator><creator>Jin, Chun‐Sil</creator><creator>Lee, Dong‐Kyou</creator><creator>Suh, Myoung‐Seok</creator><creator>Ahn, Joong‐Bae</creator><creator>Min, Seung‐Ki</creator><creator>Hong, Song‐You</creator><creator>Kang, Hyun‐Suk</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-5053-6741</orcidid></search><sort><creationdate>201804</creationdate><title>Future changes in extreme precipitation indices over Korea</title><author>Kim, Gayoung ; Cha, Dong‐Hyun ; Park, Changyong ; Lee, Gil ; Jin, Chun‐Sil ; Lee, Dong‐Kyou ; Suh, Myoung‐Seok ; Ahn, Joong‐Bae ; Min, Seung‐Ki ; Hong, Song‐You ; Kang, Hyun‐Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3594-6f8febddf0d8ba913d126dee50f73ef8511f4fa105f1c6484b1eefc6b301d9e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric models</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic indexes</topic><topic>Climatology</topic><topic>Convective instability</topic><topic>Convective precipitation</topic><topic>Environmental modeling</topic><topic>Evaluation</topic><topic>extreme precipitation</topic><topic>Extreme weather</topic><topic>Future climates</topic><topic>HadGEM2‐AO</topic><topic>Instability</topic><topic>multi‐RCM</topic><topic>Ocean models</topic><topic>Precipitation</topic><topic>Precipitation intensity</topic><topic>Rainfall</topic><topic>Rainfall intensity</topic><topic>regional climate model</topic><topic>Regional climate models</topic><topic>Regional climates</topic><topic>South Korea</topic><topic>Stability</topic><topic>STARDEX</topic><topic>Summer</topic><topic>Summer precipitation</topic><topic>Systematic errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gayoung</creatorcontrib><creatorcontrib>Cha, Dong‐Hyun</creatorcontrib><creatorcontrib>Park, Changyong</creatorcontrib><creatorcontrib>Lee, Gil</creatorcontrib><creatorcontrib>Jin, Chun‐Sil</creatorcontrib><creatorcontrib>Lee, Dong‐Kyou</creatorcontrib><creatorcontrib>Suh, Myoung‐Seok</creatorcontrib><creatorcontrib>Ahn, Joong‐Bae</creatorcontrib><creatorcontrib>Min, Seung‐Ki</creatorcontrib><creatorcontrib>Hong, Song‐You</creatorcontrib><creatorcontrib>Kang, Hyun‐Suk</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Gayoung</au><au>Cha, Dong‐Hyun</au><au>Park, Changyong</au><au>Lee, Gil</au><au>Jin, Chun‐Sil</au><au>Lee, Dong‐Kyou</au><au>Suh, Myoung‐Seok</au><au>Ahn, Joong‐Bae</au><au>Min, Seung‐Ki</au><au>Hong, Song‐You</au><au>Kang, Hyun‐Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Future changes in extreme precipitation indices over Korea</atitle><jtitle>International journal of climatology</jtitle><date>2018-04</date><risdate>2018</risdate><volume>38</volume><issue>S1</issue><spage>e862</spage><epage>e874</epage><pages>e862-e874</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>ABSTRACT
In this study, the regional climate of the Korean Peninsula is dynamically downscaled using a high‐resolution regional climate model forced by two representative concentration pathway scenarios of Hadley Centre Global Environmental Model version 2‐Atmosphere and Ocean (HadGEM2‐AO) using multiple regional climate models. Changes in extreme precipitation indices are investigated. Through the evaluation of the present climate, a multi‐model ensemble reasonably reproduces the long‐term climatology of extreme precipitation indices over South Korea despite some systematic errors. Both mean and extreme precipitation intensities for 80 years in the future (2021–2100) increase compared to those of the present. However, the increasing rates of indices related to precipitation intensities are different according to sub‐period, season, and emission scenarios. Mean and extreme precipitation intensities of the future climate increase during the summer when most extreme precipitation events occur over the Korean Peninsula. Also, abnormal extreme precipitation can increase during future summers due to increasing variances of indices related to extreme precipitation intensity. Increasing extreme summer precipitation over South Korea is proportional to the increases in convective precipitation compared to non‐convective precipitation. This indicates that future changes in summer precipitation, with regard to intensity and frequency, over South Korea, among representative concentration pathway scenarios, are more related to a change in convective instability rather than synoptic condition.
This figure shows multi‐model ensemble (MME) rate of change in six indices between future (2021–2100) and present (1981–2005) scenarios (%). Dashed lines denote the areas where all RCMs reproduce the same sign of indices. Overall extreme precipitation intensity as well as mean precipitation intensity increases in the future. Also, model results from the five RCMs are consistent in the regions with a high rate of change for the indices, implying that the changes in indices are highly reliable in that region.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/joc.5414</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5053-6741</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8418 |
ispartof | International journal of climatology, 2018-04, Vol.38 (S1), p.e862-e874 |
issn | 0899-8418 1097-0088 |
language | eng |
recordid | cdi_proquest_journals_2030180841 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atmospheric models Climate Climate change Climate models Climatic indexes Climatology Convective instability Convective precipitation Environmental modeling Evaluation extreme precipitation Extreme weather Future climates HadGEM2‐AO Instability multi‐RCM Ocean models Precipitation Precipitation intensity Rainfall Rainfall intensity regional climate model Regional climate models Regional climates South Korea Stability STARDEX Summer Summer precipitation Systematic errors |
title | Future changes in extreme precipitation indices over Korea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Future%20changes%20in%20extreme%20precipitation%20indices%20over%20Korea&rft.jtitle=International%20journal%20of%20climatology&rft.au=Kim,%20Gayoung&rft.date=2018-04&rft.volume=38&rft.issue=S1&rft.spage=e862&rft.epage=e874&rft.pages=e862-e874&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.5414&rft_dat=%3Cproquest_cross%3E2030180841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030180841&rft_id=info:pmid/&rfr_iscdi=true |