Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis

Scope We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice. Methods and results Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular nutrition & food research 2018-04, Vol.62 (8), p.e1700890-n/a
Hauptverfasser: Du, Ke, Liu, Mingyan, Zhong, Xin, Yao, Weifan, Xiao, Qinghuan, Wen, Quan, Yang, Bo, Wei, Minjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e1700890
container_title Molecular nutrition & food research
container_volume 62
creator Du, Ke
Liu, Mingyan
Zhong, Xin
Yao, Weifan
Xiao, Qinghuan
Wen, Quan
Yang, Bo
Wei, Minjie
description Scope We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice. Methods and results Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aβ1‐42‐induced toxicity in SH‐SY5Y cells, increased cell viability, and decreased apoptosis in a dose‐dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down‐regulation of GRP78, CHOP, cleaved‐caspase‐12 and ‐3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER‐stress‐associated proteins. Conclusion These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER‐stress‐associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD. Epigallocatechin gallate (EGCG) inhibits endoplasmic reticulum (ER)‐stress‐associated neuronal apoptosis in Aβ‐treated SH‐SY5Y cells in vitro and in APP/PS1 mice in vivo, suggesting that inhibition of ER‐stress‐associated neuronal apoptosis contributed to the anti‐AD mechanisms of EGCG treatment.
doi_str_mv 10.1002/mnfr.201700890
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2029691181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2029691181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3688-fc8585c8618d3b36a7b2d16c693273c1dc9f2ffa2ae835c91e80613133e74bba3</originalsourceid><addsrcrecordid>eNqFkD1OwzAYQC0E4n9lRJaYU_yTOM5YoRYq0SIVmCPHdopREgc7AboxcADOwkE4BCfBVaErkz9bz--THgAnGA0wQuS8bko3IAinCPEMbYF9zDCNYkzp9mYmyR448P4RIYpJTHfBHsnimHGW7oP3UWsWoqqsFJ2WD6aBl-EWZjjXqpfaw2G9rKxR8Ovz--1j0qweFZzp3tnOvhppuiV8NgJOmgdTmM40CzhqlG0r4Wsjg6Uzsq_6Gt52TnsfHFOtTFig4LC1bWe98UdgpxSV18e_5yG4H4_uLq6i65vLycXwOpKUcR6Vkic8kZxhrmhBmUgLojCTLKMkpRIrmZWkLAURmtNEZlhzFAqEFjqNi0LQQ3C29rbOPvXad_mj7V0TVuYEkYxlGHMcqMGaks5673SZt87Uwi1zjPJV9HwVPd9EDx9Of7V9UWu1wf8qByBeAy-m0st_dPl0Np5TnHL6AwYQkpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029691181</pqid></control><display><type>article</type><title>Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Du, Ke ; Liu, Mingyan ; Zhong, Xin ; Yao, Weifan ; Xiao, Qinghuan ; Wen, Quan ; Yang, Bo ; Wei, Minjie</creator><creatorcontrib>Du, Ke ; Liu, Mingyan ; Zhong, Xin ; Yao, Weifan ; Xiao, Qinghuan ; Wen, Quan ; Yang, Bo ; Wei, Minjie</creatorcontrib><description>Scope We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice. Methods and results Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aβ1‐42‐induced toxicity in SH‐SY5Y cells, increased cell viability, and decreased apoptosis in a dose‐dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down‐regulation of GRP78, CHOP, cleaved‐caspase‐12 and ‐3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER‐stress‐associated proteins. Conclusion These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER‐stress‐associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD. Epigallocatechin gallate (EGCG) inhibits endoplasmic reticulum (ER)‐stress‐associated neuronal apoptosis in Aβ‐treated SH‐SY5Y cells in vitro and in APP/PS1 mice in vivo, suggesting that inhibition of ER‐stress‐associated neuronal apoptosis contributed to the anti‐AD mechanisms of EGCG treatment.</description><identifier>ISSN: 1613-4125</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.201700890</identifier><identifier>PMID: 29446867</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject><![CDATA[Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer Disease - prevention & control ; Alzheimer's disease ; Amyloid ; Amyloid beta-Peptides - antagonists & inhibitors ; Amyloid beta-Peptides - metabolism ; Amyloid precursor protein ; Animals ; Apoptosis ; Biocompatibility ; Caspase ; Caspase 12 - chemistry ; Caspase 12 - genetics ; Caspase 12 - metabolism ; Caspase 3 - chemistry ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Catechin - analogs & derivatives ; Catechin - metabolism ; Catechin - therapeutic use ; Cell Line, Tumor ; Cell Survival ; Cerebral Cortex - metabolism ; Cerebral Cortex - pathology ; Cerebral Cortex - ultrastructure ; Cytometry ; Cytotoxicity ; Dietary Supplements ; EGCG ; Electron microscopy ; Endoplasmic reticulum ; Endoplasmic Reticulum Chaperone BiP ; Endoplasmic Reticulum Stress ; Epigallocatechin gallate ; ER stress ; Flow cytometry ; green tea ; Heat-Shock Proteins - agonists ; Heat-Shock Proteins - antagonists & inhibitors ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Humans ; Immunohistochemistry ; Mice ; Mice, Transgenic ; Microscopy, Electron, Transmission ; Mitigation ; Nerve Tissue Proteins - agonists ; Nerve Tissue Proteins - antagonists & inhibitors ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurodegenerative diseases ; neuronal apoptosis ; Neurons - metabolism ; Neurons - pathology ; Neurons - ultrastructure ; Neuroprotective Agents - metabolism ; Neuroprotective Agents - therapeutic use ; Neurotoxicity ; Nootropic Agents - metabolism ; Nootropic Agents - therapeutic use ; Peptide Fragments - antagonists & inhibitors ; Peptide Fragments - metabolism ; Presenilin 1 ; Proteins ; Random Allocation ; Rodents ; Stress ; Stresses ; Thapsigargin ; Toxicity ; Transcription Factor CHOP - agonists ; Transcription Factor CHOP - antagonists & inhibitors ; Transcription Factor CHOP - genetics ; Transcription Factor CHOP - metabolism ; Transgenic animals ; Transgenic mice ; Transmission electron microscopy ; Tunicamycin ; Western blotting]]></subject><ispartof>Molecular nutrition &amp; food research, 2018-04, Vol.62 (8), p.e1700890-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3688-fc8585c8618d3b36a7b2d16c693273c1dc9f2ffa2ae835c91e80613133e74bba3</citedby><cites>FETCH-LOGICAL-c3688-fc8585c8618d3b36a7b2d16c693273c1dc9f2ffa2ae835c91e80613133e74bba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.201700890$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.201700890$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29446867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Ke</creatorcontrib><creatorcontrib>Liu, Mingyan</creatorcontrib><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Yao, Weifan</creatorcontrib><creatorcontrib>Xiao, Qinghuan</creatorcontrib><creatorcontrib>Wen, Quan</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Wei, Minjie</creatorcontrib><title>Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis</title><title>Molecular nutrition &amp; food research</title><addtitle>Mol Nutr Food Res</addtitle><description>Scope We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice. Methods and results Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aβ1‐42‐induced toxicity in SH‐SY5Y cells, increased cell viability, and decreased apoptosis in a dose‐dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down‐regulation of GRP78, CHOP, cleaved‐caspase‐12 and ‐3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER‐stress‐associated proteins. Conclusion These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER‐stress‐associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD. Epigallocatechin gallate (EGCG) inhibits endoplasmic reticulum (ER)‐stress‐associated neuronal apoptosis in Aβ‐treated SH‐SY5Y cells in vitro and in APP/PS1 mice in vivo, suggesting that inhibition of ER‐stress‐associated neuronal apoptosis contributed to the anti‐AD mechanisms of EGCG treatment.</description><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer Disease - prevention &amp; control</subject><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>Amyloid beta-Peptides - antagonists &amp; inhibitors</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Amyloid precursor protein</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biocompatibility</subject><subject>Caspase</subject><subject>Caspase 12 - chemistry</subject><subject>Caspase 12 - genetics</subject><subject>Caspase 12 - metabolism</subject><subject>Caspase 3 - chemistry</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Catechin - analogs &amp; derivatives</subject><subject>Catechin - metabolism</subject><subject>Catechin - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - pathology</subject><subject>Cerebral Cortex - ultrastructure</subject><subject>Cytometry</subject><subject>Cytotoxicity</subject><subject>Dietary Supplements</subject><subject>EGCG</subject><subject>Electron microscopy</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Chaperone BiP</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Epigallocatechin gallate</subject><subject>ER stress</subject><subject>Flow cytometry</subject><subject>green tea</subject><subject>Heat-Shock Proteins - agonists</subject><subject>Heat-Shock Proteins - antagonists &amp; inhibitors</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Electron, Transmission</subject><subject>Mitigation</subject><subject>Nerve Tissue Proteins - agonists</subject><subject>Nerve Tissue Proteins - antagonists &amp; inhibitors</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>neuronal apoptosis</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurons - ultrastructure</subject><subject>Neuroprotective Agents - metabolism</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Neurotoxicity</subject><subject>Nootropic Agents - metabolism</subject><subject>Nootropic Agents - therapeutic use</subject><subject>Peptide Fragments - antagonists &amp; inhibitors</subject><subject>Peptide Fragments - metabolism</subject><subject>Presenilin 1</subject><subject>Proteins</subject><subject>Random Allocation</subject><subject>Rodents</subject><subject>Stress</subject><subject>Stresses</subject><subject>Thapsigargin</subject><subject>Toxicity</subject><subject>Transcription Factor CHOP - agonists</subject><subject>Transcription Factor CHOP - antagonists &amp; inhibitors</subject><subject>Transcription Factor CHOP - genetics</subject><subject>Transcription Factor CHOP - metabolism</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>Transmission electron microscopy</subject><subject>Tunicamycin</subject><subject>Western blotting</subject><issn>1613-4125</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1OwzAYQC0E4n9lRJaYU_yTOM5YoRYq0SIVmCPHdopREgc7AboxcADOwkE4BCfBVaErkz9bz--THgAnGA0wQuS8bko3IAinCPEMbYF9zDCNYkzp9mYmyR448P4RIYpJTHfBHsnimHGW7oP3UWsWoqqsFJ2WD6aBl-EWZjjXqpfaw2G9rKxR8Ovz--1j0qweFZzp3tnOvhppuiV8NgJOmgdTmM40CzhqlG0r4Wsjg6Uzsq_6Gt52TnsfHFOtTFig4LC1bWe98UdgpxSV18e_5yG4H4_uLq6i65vLycXwOpKUcR6Vkic8kZxhrmhBmUgLojCTLKMkpRIrmZWkLAURmtNEZlhzFAqEFjqNi0LQQ3C29rbOPvXad_mj7V0TVuYEkYxlGHMcqMGaks5673SZt87Uwi1zjPJV9HwVPd9EDx9Of7V9UWu1wf8qByBeAy-m0st_dPl0Np5TnHL6AwYQkpE</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Du, Ke</creator><creator>Liu, Mingyan</creator><creator>Zhong, Xin</creator><creator>Yao, Weifan</creator><creator>Xiao, Qinghuan</creator><creator>Wen, Quan</creator><creator>Yang, Bo</creator><creator>Wei, Minjie</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>201804</creationdate><title>Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis</title><author>Du, Ke ; Liu, Mingyan ; Zhong, Xin ; Yao, Weifan ; Xiao, Qinghuan ; Wen, Quan ; Yang, Bo ; Wei, Minjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3688-fc8585c8618d3b36a7b2d16c693273c1dc9f2ffa2ae835c91e80613133e74bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer Disease - prevention &amp; control</topic><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>Amyloid beta-Peptides - antagonists &amp; inhibitors</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Amyloid precursor protein</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biocompatibility</topic><topic>Caspase</topic><topic>Caspase 12 - chemistry</topic><topic>Caspase 12 - genetics</topic><topic>Caspase 12 - metabolism</topic><topic>Caspase 3 - chemistry</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Catechin - analogs &amp; derivatives</topic><topic>Catechin - metabolism</topic><topic>Catechin - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - pathology</topic><topic>Cerebral Cortex - ultrastructure</topic><topic>Cytometry</topic><topic>Cytotoxicity</topic><topic>Dietary Supplements</topic><topic>EGCG</topic><topic>Electron microscopy</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Chaperone BiP</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Epigallocatechin gallate</topic><topic>ER stress</topic><topic>Flow cytometry</topic><topic>green tea</topic><topic>Heat-Shock Proteins - agonists</topic><topic>Heat-Shock Proteins - antagonists &amp; inhibitors</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Electron, Transmission</topic><topic>Mitigation</topic><topic>Nerve Tissue Proteins - agonists</topic><topic>Nerve Tissue Proteins - antagonists &amp; inhibitors</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>neuronal apoptosis</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurons - ultrastructure</topic><topic>Neuroprotective Agents - metabolism</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Neurotoxicity</topic><topic>Nootropic Agents - metabolism</topic><topic>Nootropic Agents - therapeutic use</topic><topic>Peptide Fragments - antagonists &amp; inhibitors</topic><topic>Peptide Fragments - metabolism</topic><topic>Presenilin 1</topic><topic>Proteins</topic><topic>Random Allocation</topic><topic>Rodents</topic><topic>Stress</topic><topic>Stresses</topic><topic>Thapsigargin</topic><topic>Toxicity</topic><topic>Transcription Factor CHOP - agonists</topic><topic>Transcription Factor CHOP - antagonists &amp; inhibitors</topic><topic>Transcription Factor CHOP - genetics</topic><topic>Transcription Factor CHOP - metabolism</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>Transmission electron microscopy</topic><topic>Tunicamycin</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Ke</creatorcontrib><creatorcontrib>Liu, Mingyan</creatorcontrib><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Yao, Weifan</creatorcontrib><creatorcontrib>Xiao, Qinghuan</creatorcontrib><creatorcontrib>Wen, Quan</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Wei, Minjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Molecular nutrition &amp; food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Ke</au><au>Liu, Mingyan</au><au>Zhong, Xin</au><au>Yao, Weifan</au><au>Xiao, Qinghuan</au><au>Wen, Quan</au><au>Yang, Bo</au><au>Wei, Minjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis</atitle><jtitle>Molecular nutrition &amp; food research</jtitle><addtitle>Mol Nutr Food Res</addtitle><date>2018-04</date><risdate>2018</risdate><volume>62</volume><issue>8</issue><spage>e1700890</spage><epage>n/a</epage><pages>e1700890-n/a</pages><issn>1613-4125</issn><eissn>1613-4133</eissn><abstract>Scope We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice. Methods and results Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aβ1‐42‐induced toxicity in SH‐SY5Y cells, increased cell viability, and decreased apoptosis in a dose‐dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down‐regulation of GRP78, CHOP, cleaved‐caspase‐12 and ‐3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER‐stress‐associated proteins. Conclusion These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER‐stress‐associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD. Epigallocatechin gallate (EGCG) inhibits endoplasmic reticulum (ER)‐stress‐associated neuronal apoptosis in Aβ‐treated SH‐SY5Y cells in vitro and in APP/PS1 mice in vivo, suggesting that inhibition of ER‐stress‐associated neuronal apoptosis contributed to the anti‐AD mechanisms of EGCG treatment.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29446867</pmid><doi>10.1002/mnfr.201700890</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-4125
ispartof Molecular nutrition & food research, 2018-04, Vol.62 (8), p.e1700890-n/a
issn 1613-4125
1613-4133
language eng
recordid cdi_proquest_journals_2029691181
source MEDLINE; Access via Wiley Online Library
subjects Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer Disease - prevention & control
Alzheimer's disease
Amyloid
Amyloid beta-Peptides - antagonists & inhibitors
Amyloid beta-Peptides - metabolism
Amyloid precursor protein
Animals
Apoptosis
Biocompatibility
Caspase
Caspase 12 - chemistry
Caspase 12 - genetics
Caspase 12 - metabolism
Caspase 3 - chemistry
Caspase 3 - genetics
Caspase 3 - metabolism
Catechin - analogs & derivatives
Catechin - metabolism
Catechin - therapeutic use
Cell Line, Tumor
Cell Survival
Cerebral Cortex - metabolism
Cerebral Cortex - pathology
Cerebral Cortex - ultrastructure
Cytometry
Cytotoxicity
Dietary Supplements
EGCG
Electron microscopy
Endoplasmic reticulum
Endoplasmic Reticulum Chaperone BiP
Endoplasmic Reticulum Stress
Epigallocatechin gallate
ER stress
Flow cytometry
green tea
Heat-Shock Proteins - agonists
Heat-Shock Proteins - antagonists & inhibitors
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Humans
Immunohistochemistry
Mice
Mice, Transgenic
Microscopy, Electron, Transmission
Mitigation
Nerve Tissue Proteins - agonists
Nerve Tissue Proteins - antagonists & inhibitors
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurodegenerative diseases
neuronal apoptosis
Neurons - metabolism
Neurons - pathology
Neurons - ultrastructure
Neuroprotective Agents - metabolism
Neuroprotective Agents - therapeutic use
Neurotoxicity
Nootropic Agents - metabolism
Nootropic Agents - therapeutic use
Peptide Fragments - antagonists & inhibitors
Peptide Fragments - metabolism
Presenilin 1
Proteins
Random Allocation
Rodents
Stress
Stresses
Thapsigargin
Toxicity
Transcription Factor CHOP - agonists
Transcription Factor CHOP - antagonists & inhibitors
Transcription Factor CHOP - genetics
Transcription Factor CHOP - metabolism
Transgenic animals
Transgenic mice
Transmission electron microscopy
Tunicamycin
Western blotting
title Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigallocatechin%20Gallate%20Reduces%20Amyloid%20%CE%B2%E2%80%90Induced%20Neurotoxicity%20via%20Inhibiting%20Endoplasmic%20Reticulum%20Stress%E2%80%90Mediated%20Apoptosis&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Du,%20Ke&rft.date=2018-04&rft.volume=62&rft.issue=8&rft.spage=e1700890&rft.epage=n/a&rft.pages=e1700890-n/a&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.201700890&rft_dat=%3Cproquest_cross%3E2029691181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2029691181&rft_id=info:pmid/29446867&rfr_iscdi=true