Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis
Scope We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice. Methods and results Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemis...
Gespeichert in:
Veröffentlicht in: | Molecular nutrition & food research 2018-04, Vol.62 (8), p.e1700890-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e1700890 |
container_title | Molecular nutrition & food research |
container_volume | 62 |
creator | Du, Ke Liu, Mingyan Zhong, Xin Yao, Weifan Xiao, Qinghuan Wen, Quan Yang, Bo Wei, Minjie |
description | Scope
We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice.
Methods and results
Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aβ1‐42‐induced toxicity in SH‐SY5Y cells, increased cell viability, and decreased apoptosis in a dose‐dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down‐regulation of GRP78, CHOP, cleaved‐caspase‐12 and ‐3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER‐stress‐associated proteins.
Conclusion
These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER‐stress‐associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD.
Epigallocatechin gallate (EGCG) inhibits endoplasmic reticulum (ER)‐stress‐associated neuronal apoptosis in Aβ‐treated SH‐SY5Y cells in vitro and in APP/PS1 mice in vivo, suggesting that inhibition of ER‐stress‐associated neuronal apoptosis contributed to the anti‐AD mechanisms of EGCG treatment. |
doi_str_mv | 10.1002/mnfr.201700890 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2029691181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2029691181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3688-fc8585c8618d3b36a7b2d16c693273c1dc9f2ffa2ae835c91e80613133e74bba3</originalsourceid><addsrcrecordid>eNqFkD1OwzAYQC0E4n9lRJaYU_yTOM5YoRYq0SIVmCPHdopREgc7AboxcADOwkE4BCfBVaErkz9bz--THgAnGA0wQuS8bko3IAinCPEMbYF9zDCNYkzp9mYmyR448P4RIYpJTHfBHsnimHGW7oP3UWsWoqqsFJ2WD6aBl-EWZjjXqpfaw2G9rKxR8Ovz--1j0qweFZzp3tnOvhppuiV8NgJOmgdTmM40CzhqlG0r4Wsjg6Uzsq_6Gt52TnsfHFOtTFig4LC1bWe98UdgpxSV18e_5yG4H4_uLq6i65vLycXwOpKUcR6Vkic8kZxhrmhBmUgLojCTLKMkpRIrmZWkLAURmtNEZlhzFAqEFjqNi0LQQ3C29rbOPvXad_mj7V0TVuYEkYxlGHMcqMGaks5673SZt87Uwi1zjPJV9HwVPd9EDx9Of7V9UWu1wf8qByBeAy-m0st_dPl0Np5TnHL6AwYQkpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029691181</pqid></control><display><type>article</type><title>Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Du, Ke ; Liu, Mingyan ; Zhong, Xin ; Yao, Weifan ; Xiao, Qinghuan ; Wen, Quan ; Yang, Bo ; Wei, Minjie</creator><creatorcontrib>Du, Ke ; Liu, Mingyan ; Zhong, Xin ; Yao, Weifan ; Xiao, Qinghuan ; Wen, Quan ; Yang, Bo ; Wei, Minjie</creatorcontrib><description>Scope
We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice.
Methods and results
Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aβ1‐42‐induced toxicity in SH‐SY5Y cells, increased cell viability, and decreased apoptosis in a dose‐dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down‐regulation of GRP78, CHOP, cleaved‐caspase‐12 and ‐3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER‐stress‐associated proteins.
Conclusion
These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER‐stress‐associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD.
Epigallocatechin gallate (EGCG) inhibits endoplasmic reticulum (ER)‐stress‐associated neuronal apoptosis in Aβ‐treated SH‐SY5Y cells in vitro and in APP/PS1 mice in vivo, suggesting that inhibition of ER‐stress‐associated neuronal apoptosis contributed to the anti‐AD mechanisms of EGCG treatment.</description><identifier>ISSN: 1613-4125</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.201700890</identifier><identifier>PMID: 29446867</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject><![CDATA[Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer Disease - prevention & control ; Alzheimer's disease ; Amyloid ; Amyloid beta-Peptides - antagonists & inhibitors ; Amyloid beta-Peptides - metabolism ; Amyloid precursor protein ; Animals ; Apoptosis ; Biocompatibility ; Caspase ; Caspase 12 - chemistry ; Caspase 12 - genetics ; Caspase 12 - metabolism ; Caspase 3 - chemistry ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Catechin - analogs & derivatives ; Catechin - metabolism ; Catechin - therapeutic use ; Cell Line, Tumor ; Cell Survival ; Cerebral Cortex - metabolism ; Cerebral Cortex - pathology ; Cerebral Cortex - ultrastructure ; Cytometry ; Cytotoxicity ; Dietary Supplements ; EGCG ; Electron microscopy ; Endoplasmic reticulum ; Endoplasmic Reticulum Chaperone BiP ; Endoplasmic Reticulum Stress ; Epigallocatechin gallate ; ER stress ; Flow cytometry ; green tea ; Heat-Shock Proteins - agonists ; Heat-Shock Proteins - antagonists & inhibitors ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Humans ; Immunohistochemistry ; Mice ; Mice, Transgenic ; Microscopy, Electron, Transmission ; Mitigation ; Nerve Tissue Proteins - agonists ; Nerve Tissue Proteins - antagonists & inhibitors ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurodegenerative diseases ; neuronal apoptosis ; Neurons - metabolism ; Neurons - pathology ; Neurons - ultrastructure ; Neuroprotective Agents - metabolism ; Neuroprotective Agents - therapeutic use ; Neurotoxicity ; Nootropic Agents - metabolism ; Nootropic Agents - therapeutic use ; Peptide Fragments - antagonists & inhibitors ; Peptide Fragments - metabolism ; Presenilin 1 ; Proteins ; Random Allocation ; Rodents ; Stress ; Stresses ; Thapsigargin ; Toxicity ; Transcription Factor CHOP - agonists ; Transcription Factor CHOP - antagonists & inhibitors ; Transcription Factor CHOP - genetics ; Transcription Factor CHOP - metabolism ; Transgenic animals ; Transgenic mice ; Transmission electron microscopy ; Tunicamycin ; Western blotting]]></subject><ispartof>Molecular nutrition & food research, 2018-04, Vol.62 (8), p.e1700890-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3688-fc8585c8618d3b36a7b2d16c693273c1dc9f2ffa2ae835c91e80613133e74bba3</citedby><cites>FETCH-LOGICAL-c3688-fc8585c8618d3b36a7b2d16c693273c1dc9f2ffa2ae835c91e80613133e74bba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.201700890$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.201700890$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29446867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Ke</creatorcontrib><creatorcontrib>Liu, Mingyan</creatorcontrib><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Yao, Weifan</creatorcontrib><creatorcontrib>Xiao, Qinghuan</creatorcontrib><creatorcontrib>Wen, Quan</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Wei, Minjie</creatorcontrib><title>Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis</title><title>Molecular nutrition & food research</title><addtitle>Mol Nutr Food Res</addtitle><description>Scope
We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice.
Methods and results
Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aβ1‐42‐induced toxicity in SH‐SY5Y cells, increased cell viability, and decreased apoptosis in a dose‐dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down‐regulation of GRP78, CHOP, cleaved‐caspase‐12 and ‐3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER‐stress‐associated proteins.
Conclusion
These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER‐stress‐associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD.
Epigallocatechin gallate (EGCG) inhibits endoplasmic reticulum (ER)‐stress‐associated neuronal apoptosis in Aβ‐treated SH‐SY5Y cells in vitro and in APP/PS1 mice in vivo, suggesting that inhibition of ER‐stress‐associated neuronal apoptosis contributed to the anti‐AD mechanisms of EGCG treatment.</description><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer Disease - prevention & control</subject><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>Amyloid beta-Peptides - antagonists & inhibitors</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Amyloid precursor protein</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biocompatibility</subject><subject>Caspase</subject><subject>Caspase 12 - chemistry</subject><subject>Caspase 12 - genetics</subject><subject>Caspase 12 - metabolism</subject><subject>Caspase 3 - chemistry</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Catechin - analogs & derivatives</subject><subject>Catechin - metabolism</subject><subject>Catechin - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - pathology</subject><subject>Cerebral Cortex - ultrastructure</subject><subject>Cytometry</subject><subject>Cytotoxicity</subject><subject>Dietary Supplements</subject><subject>EGCG</subject><subject>Electron microscopy</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Chaperone BiP</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Epigallocatechin gallate</subject><subject>ER stress</subject><subject>Flow cytometry</subject><subject>green tea</subject><subject>Heat-Shock Proteins - agonists</subject><subject>Heat-Shock Proteins - antagonists & inhibitors</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Electron, Transmission</subject><subject>Mitigation</subject><subject>Nerve Tissue Proteins - agonists</subject><subject>Nerve Tissue Proteins - antagonists & inhibitors</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>neuronal apoptosis</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurons - ultrastructure</subject><subject>Neuroprotective Agents - metabolism</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Neurotoxicity</subject><subject>Nootropic Agents - metabolism</subject><subject>Nootropic Agents - therapeutic use</subject><subject>Peptide Fragments - antagonists & inhibitors</subject><subject>Peptide Fragments - metabolism</subject><subject>Presenilin 1</subject><subject>Proteins</subject><subject>Random Allocation</subject><subject>Rodents</subject><subject>Stress</subject><subject>Stresses</subject><subject>Thapsigargin</subject><subject>Toxicity</subject><subject>Transcription Factor CHOP - agonists</subject><subject>Transcription Factor CHOP - antagonists & inhibitors</subject><subject>Transcription Factor CHOP - genetics</subject><subject>Transcription Factor CHOP - metabolism</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>Transmission electron microscopy</subject><subject>Tunicamycin</subject><subject>Western blotting</subject><issn>1613-4125</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1OwzAYQC0E4n9lRJaYU_yTOM5YoRYq0SIVmCPHdopREgc7AboxcADOwkE4BCfBVaErkz9bz--THgAnGA0wQuS8bko3IAinCPEMbYF9zDCNYkzp9mYmyR448P4RIYpJTHfBHsnimHGW7oP3UWsWoqqsFJ2WD6aBl-EWZjjXqpfaw2G9rKxR8Ovz--1j0qweFZzp3tnOvhppuiV8NgJOmgdTmM40CzhqlG0r4Wsjg6Uzsq_6Gt52TnsfHFOtTFig4LC1bWe98UdgpxSV18e_5yG4H4_uLq6i65vLycXwOpKUcR6Vkic8kZxhrmhBmUgLojCTLKMkpRIrmZWkLAURmtNEZlhzFAqEFjqNi0LQQ3C29rbOPvXad_mj7V0TVuYEkYxlGHMcqMGaks5673SZt87Uwi1zjPJV9HwVPd9EDx9Of7V9UWu1wf8qByBeAy-m0st_dPl0Np5TnHL6AwYQkpE</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Du, Ke</creator><creator>Liu, Mingyan</creator><creator>Zhong, Xin</creator><creator>Yao, Weifan</creator><creator>Xiao, Qinghuan</creator><creator>Wen, Quan</creator><creator>Yang, Bo</creator><creator>Wei, Minjie</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>201804</creationdate><title>Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis</title><author>Du, Ke ; Liu, Mingyan ; Zhong, Xin ; Yao, Weifan ; Xiao, Qinghuan ; Wen, Quan ; Yang, Bo ; Wei, Minjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3688-fc8585c8618d3b36a7b2d16c693273c1dc9f2ffa2ae835c91e80613133e74bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer Disease - prevention & control</topic><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>Amyloid beta-Peptides - antagonists & inhibitors</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Amyloid precursor protein</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biocompatibility</topic><topic>Caspase</topic><topic>Caspase 12 - chemistry</topic><topic>Caspase 12 - genetics</topic><topic>Caspase 12 - metabolism</topic><topic>Caspase 3 - chemistry</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Catechin - analogs & derivatives</topic><topic>Catechin - metabolism</topic><topic>Catechin - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - pathology</topic><topic>Cerebral Cortex - ultrastructure</topic><topic>Cytometry</topic><topic>Cytotoxicity</topic><topic>Dietary Supplements</topic><topic>EGCG</topic><topic>Electron microscopy</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Chaperone BiP</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Epigallocatechin gallate</topic><topic>ER stress</topic><topic>Flow cytometry</topic><topic>green tea</topic><topic>Heat-Shock Proteins - agonists</topic><topic>Heat-Shock Proteins - antagonists & inhibitors</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Electron, Transmission</topic><topic>Mitigation</topic><topic>Nerve Tissue Proteins - agonists</topic><topic>Nerve Tissue Proteins - antagonists & inhibitors</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>neuronal apoptosis</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurons - ultrastructure</topic><topic>Neuroprotective Agents - metabolism</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Neurotoxicity</topic><topic>Nootropic Agents - metabolism</topic><topic>Nootropic Agents - therapeutic use</topic><topic>Peptide Fragments - antagonists & inhibitors</topic><topic>Peptide Fragments - metabolism</topic><topic>Presenilin 1</topic><topic>Proteins</topic><topic>Random Allocation</topic><topic>Rodents</topic><topic>Stress</topic><topic>Stresses</topic><topic>Thapsigargin</topic><topic>Toxicity</topic><topic>Transcription Factor CHOP - agonists</topic><topic>Transcription Factor CHOP - antagonists & inhibitors</topic><topic>Transcription Factor CHOP - genetics</topic><topic>Transcription Factor CHOP - metabolism</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>Transmission electron microscopy</topic><topic>Tunicamycin</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Ke</creatorcontrib><creatorcontrib>Liu, Mingyan</creatorcontrib><creatorcontrib>Zhong, Xin</creatorcontrib><creatorcontrib>Yao, Weifan</creatorcontrib><creatorcontrib>Xiao, Qinghuan</creatorcontrib><creatorcontrib>Wen, Quan</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Wei, Minjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Molecular nutrition & food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Ke</au><au>Liu, Mingyan</au><au>Zhong, Xin</au><au>Yao, Weifan</au><au>Xiao, Qinghuan</au><au>Wen, Quan</au><au>Yang, Bo</au><au>Wei, Minjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis</atitle><jtitle>Molecular nutrition & food research</jtitle><addtitle>Mol Nutr Food Res</addtitle><date>2018-04</date><risdate>2018</risdate><volume>62</volume><issue>8</issue><spage>e1700890</spage><epage>n/a</epage><pages>e1700890-n/a</pages><issn>1613-4125</issn><eissn>1613-4133</eissn><abstract>Scope
We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1‐42‐induced SH‐SY5Y cells and APP/PS1 transgenic mice.
Methods and results
Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aβ1‐42‐induced toxicity in SH‐SY5Y cells, increased cell viability, and decreased apoptosis in a dose‐dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down‐regulation of GRP78, CHOP, cleaved‐caspase‐12 and ‐3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER‐stress‐associated proteins.
Conclusion
These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER‐stress‐associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD.
Epigallocatechin gallate (EGCG) inhibits endoplasmic reticulum (ER)‐stress‐associated neuronal apoptosis in Aβ‐treated SH‐SY5Y cells in vitro and in APP/PS1 mice in vivo, suggesting that inhibition of ER‐stress‐associated neuronal apoptosis contributed to the anti‐AD mechanisms of EGCG treatment.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29446867</pmid><doi>10.1002/mnfr.201700890</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4125 |
ispartof | Molecular nutrition & food research, 2018-04, Vol.62 (8), p.e1700890-n/a |
issn | 1613-4125 1613-4133 |
language | eng |
recordid | cdi_proquest_journals_2029691181 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer Disease - prevention & control Alzheimer's disease Amyloid Amyloid beta-Peptides - antagonists & inhibitors Amyloid beta-Peptides - metabolism Amyloid precursor protein Animals Apoptosis Biocompatibility Caspase Caspase 12 - chemistry Caspase 12 - genetics Caspase 12 - metabolism Caspase 3 - chemistry Caspase 3 - genetics Caspase 3 - metabolism Catechin - analogs & derivatives Catechin - metabolism Catechin - therapeutic use Cell Line, Tumor Cell Survival Cerebral Cortex - metabolism Cerebral Cortex - pathology Cerebral Cortex - ultrastructure Cytometry Cytotoxicity Dietary Supplements EGCG Electron microscopy Endoplasmic reticulum Endoplasmic Reticulum Chaperone BiP Endoplasmic Reticulum Stress Epigallocatechin gallate ER stress Flow cytometry green tea Heat-Shock Proteins - agonists Heat-Shock Proteins - antagonists & inhibitors Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Humans Immunohistochemistry Mice Mice, Transgenic Microscopy, Electron, Transmission Mitigation Nerve Tissue Proteins - agonists Nerve Tissue Proteins - antagonists & inhibitors Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurodegenerative diseases neuronal apoptosis Neurons - metabolism Neurons - pathology Neurons - ultrastructure Neuroprotective Agents - metabolism Neuroprotective Agents - therapeutic use Neurotoxicity Nootropic Agents - metabolism Nootropic Agents - therapeutic use Peptide Fragments - antagonists & inhibitors Peptide Fragments - metabolism Presenilin 1 Proteins Random Allocation Rodents Stress Stresses Thapsigargin Toxicity Transcription Factor CHOP - agonists Transcription Factor CHOP - antagonists & inhibitors Transcription Factor CHOP - genetics Transcription Factor CHOP - metabolism Transgenic animals Transgenic mice Transmission electron microscopy Tunicamycin Western blotting |
title | Epigallocatechin Gallate Reduces Amyloid β‐Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress‐Mediated Apoptosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigallocatechin%20Gallate%20Reduces%20Amyloid%20%CE%B2%E2%80%90Induced%20Neurotoxicity%20via%20Inhibiting%20Endoplasmic%20Reticulum%20Stress%E2%80%90Mediated%20Apoptosis&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Du,%20Ke&rft.date=2018-04&rft.volume=62&rft.issue=8&rft.spage=e1700890&rft.epage=n/a&rft.pages=e1700890-n/a&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.201700890&rft_dat=%3Cproquest_cross%3E2029691181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2029691181&rft_id=info:pmid/29446867&rfr_iscdi=true |