Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach
This work presents a novel computational framework to simulate fracture events in brittle anisotropic polycrystalline materials at the microscopical level, with application to solar-grade polycrystalline Silicon. Quasi-static failure is modeled by combining the phase field approach of brittle fractu...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2018-03, Vol.330, p.123-148 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | |
container_start_page | 123 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 330 |
creator | Paggi, M. Corrado, M. Reinoso, J. |
description | This work presents a novel computational framework to simulate fracture events in brittle anisotropic polycrystalline materials at the microscopical level, with application to solar-grade polycrystalline Silicon. Quasi-static failure is modeled by combining the phase field approach of brittle fracture (for transgranular fracture) with the cohesive zone model for the grain boundaries (for intergranular fracture) through the generalization of the recent FE-based technique published in [M. Paggi, J. Reinoso, Comput. Methods Appl. Mech. Engrg., 31 (2017) 145–172] to deal with anisotropic polycrystalline microstructures. The proposed model, which accounts for any anisotropic constitutive tensor for the grains depending on their preferential orientation, as well as an orientation-dependent fracture toughness, allows to simulate intergranular and transgranular crack growths in an efficient manner, with or without initial defects. One of the advantages of the current variational method is the fact that complex crack patterns in such materials are triggered without any user-intervention, being possible to account for the competition between both dissipative phenomena. In addition, further aspects with regard to the model parameters identification are discussed in reference to solar cells images obtained from transmitted light source. A series of representative numerical simulations is carried out to highlight the interplay between the different types of fracture occurring in solar-grade polycrystalline Silicon, and to assess the role of anisotropy on the crack path and on the apparent tensile strength of the material.
[Display omitted]
•Combined phase-field and cohesive zone model for fracture.•Transgranular and intergranular fracture in solar-grade Silicon.•Anisotropic phase field model for fracture.•Identification of polycrystalline Silicon mechanical parameters. |
doi_str_mv | 10.1016/j.cma.2017.10.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2029418406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782517306928</els_id><sourcerecordid>2029418406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4b20079601771f1567270c4fb88d7b656a898ef1a77d63adcfc2b84b4b50a57d3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcLPEOcF2HnbgVFUUkCpxAM6WY2-ooyQOdopUTvwDf8iX4Kqc2ctqRzM7u4PQJSUpJbS8blPdq5QRyuOcEkaP0IwKXiWMZuIYzQjJi4QLVpyisxBaEktQNkN-5ZWeth6wa3BwnfLJm1cGsBpscJN3o9V4dN1O-12YVNfZAfCz7ax2ww1eYO36OkIGjxsVADcWOvPz9a3dBoL9APzpIr93BjqsxtE7pTfn6KRRXYCLvz5Hr6u7l-VDsn66f1wu1onOSjElec0I4VUZX-K0oUXJGSc6b2ohDK_LolSiEtBQxbkpM2V0o1kt8jqvC6IKbrI5ujrsjbbvWwiTbN3WD9FSMsKqnIqclJFFDyztXQgeGjl62yu_k5TIfbSylTFauY92D8Voo-b2oIF4_ocFL4O2MGgw1oOepHH2H_UvnLiDcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029418406</pqid></control><display><type>article</type><title>Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach</title><source>Elsevier ScienceDirect Journals</source><creator>Paggi, M. ; Corrado, M. ; Reinoso, J.</creator><creatorcontrib>Paggi, M. ; Corrado, M. ; Reinoso, J.</creatorcontrib><description>This work presents a novel computational framework to simulate fracture events in brittle anisotropic polycrystalline materials at the microscopical level, with application to solar-grade polycrystalline Silicon. Quasi-static failure is modeled by combining the phase field approach of brittle fracture (for transgranular fracture) with the cohesive zone model for the grain boundaries (for intergranular fracture) through the generalization of the recent FE-based technique published in [M. Paggi, J. Reinoso, Comput. Methods Appl. Mech. Engrg., 31 (2017) 145–172] to deal with anisotropic polycrystalline microstructures. The proposed model, which accounts for any anisotropic constitutive tensor for the grains depending on their preferential orientation, as well as an orientation-dependent fracture toughness, allows to simulate intergranular and transgranular crack growths in an efficient manner, with or without initial defects. One of the advantages of the current variational method is the fact that complex crack patterns in such materials are triggered without any user-intervention, being possible to account for the competition between both dissipative phenomena. In addition, further aspects with regard to the model parameters identification are discussed in reference to solar cells images obtained from transmitted light source. A series of representative numerical simulations is carried out to highlight the interplay between the different types of fracture occurring in solar-grade polycrystalline Silicon, and to assess the role of anisotropy on the crack path and on the apparent tensile strength of the material.
[Display omitted]
•Combined phase-field and cohesive zone model for fracture.•Transgranular and intergranular fracture in solar-grade Silicon.•Anisotropic phase field model for fracture.•Identification of polycrystalline Silicon mechanical parameters.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2017.10.021</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropic elasticity ; Anisotropy ; Brittle fracture ; Cohesive zone model ; Computer simulation ; Crystal defects ; Crystallization ; Finite element method ; Fracture toughness ; Grain boundaries ; Image transmission ; Intergranular fracture ; Mathematical models ; Parameter identification ; Phase field modeling of fracture ; Photovoltaic cells ; Polycrystals ; Silicon ; Solar cells ; Solar-grade polycrystalline silicon ; Studies ; Tensile strength ; Transgranular fracture</subject><ispartof>Computer methods in applied mechanics and engineering, 2018-03, Vol.330, p.123-148</ispartof><rights>2017 The Author(s)</rights><rights>Copyright Elsevier BV Mar 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4b20079601771f1567270c4fb88d7b656a898ef1a77d63adcfc2b84b4b50a57d3</citedby><cites>FETCH-LOGICAL-c368t-4b20079601771f1567270c4fb88d7b656a898ef1a77d63adcfc2b84b4b50a57d3</cites><orcidid>0000-0001-9409-9782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782517306928$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Paggi, M.</creatorcontrib><creatorcontrib>Corrado, M.</creatorcontrib><creatorcontrib>Reinoso, J.</creatorcontrib><title>Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach</title><title>Computer methods in applied mechanics and engineering</title><description>This work presents a novel computational framework to simulate fracture events in brittle anisotropic polycrystalline materials at the microscopical level, with application to solar-grade polycrystalline Silicon. Quasi-static failure is modeled by combining the phase field approach of brittle fracture (for transgranular fracture) with the cohesive zone model for the grain boundaries (for intergranular fracture) through the generalization of the recent FE-based technique published in [M. Paggi, J. Reinoso, Comput. Methods Appl. Mech. Engrg., 31 (2017) 145–172] to deal with anisotropic polycrystalline microstructures. The proposed model, which accounts for any anisotropic constitutive tensor for the grains depending on their preferential orientation, as well as an orientation-dependent fracture toughness, allows to simulate intergranular and transgranular crack growths in an efficient manner, with or without initial defects. One of the advantages of the current variational method is the fact that complex crack patterns in such materials are triggered without any user-intervention, being possible to account for the competition between both dissipative phenomena. In addition, further aspects with regard to the model parameters identification are discussed in reference to solar cells images obtained from transmitted light source. A series of representative numerical simulations is carried out to highlight the interplay between the different types of fracture occurring in solar-grade polycrystalline Silicon, and to assess the role of anisotropy on the crack path and on the apparent tensile strength of the material.
[Display omitted]
•Combined phase-field and cohesive zone model for fracture.•Transgranular and intergranular fracture in solar-grade Silicon.•Anisotropic phase field model for fracture.•Identification of polycrystalline Silicon mechanical parameters.</description><subject>Anisotropic elasticity</subject><subject>Anisotropy</subject><subject>Brittle fracture</subject><subject>Cohesive zone model</subject><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Finite element method</subject><subject>Fracture toughness</subject><subject>Grain boundaries</subject><subject>Image transmission</subject><subject>Intergranular fracture</subject><subject>Mathematical models</subject><subject>Parameter identification</subject><subject>Phase field modeling of fracture</subject><subject>Photovoltaic cells</subject><subject>Polycrystals</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Solar-grade polycrystalline silicon</subject><subject>Studies</subject><subject>Tensile strength</subject><subject>Transgranular fracture</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcLPEOcF2HnbgVFUUkCpxAM6WY2-ooyQOdopUTvwDf8iX4Kqc2ctqRzM7u4PQJSUpJbS8blPdq5QRyuOcEkaP0IwKXiWMZuIYzQjJi4QLVpyisxBaEktQNkN-5ZWeth6wa3BwnfLJm1cGsBpscJN3o9V4dN1O-12YVNfZAfCz7ax2ww1eYO36OkIGjxsVADcWOvPz9a3dBoL9APzpIr93BjqsxtE7pTfn6KRRXYCLvz5Hr6u7l-VDsn66f1wu1onOSjElec0I4VUZX-K0oUXJGSc6b2ohDK_LolSiEtBQxbkpM2V0o1kt8jqvC6IKbrI5ujrsjbbvWwiTbN3WD9FSMsKqnIqclJFFDyztXQgeGjl62yu_k5TIfbSylTFauY92D8Voo-b2oIF4_ocFL4O2MGgw1oOepHH2H_UvnLiDcQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Paggi, M.</creator><creator>Corrado, M.</creator><creator>Reinoso, J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9409-9782</orcidid></search><sort><creationdate>20180301</creationdate><title>Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach</title><author>Paggi, M. ; Corrado, M. ; Reinoso, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4b20079601771f1567270c4fb88d7b656a898ef1a77d63adcfc2b84b4b50a57d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropic elasticity</topic><topic>Anisotropy</topic><topic>Brittle fracture</topic><topic>Cohesive zone model</topic><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Finite element method</topic><topic>Fracture toughness</topic><topic>Grain boundaries</topic><topic>Image transmission</topic><topic>Intergranular fracture</topic><topic>Mathematical models</topic><topic>Parameter identification</topic><topic>Phase field modeling of fracture</topic><topic>Photovoltaic cells</topic><topic>Polycrystals</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Solar-grade polycrystalline silicon</topic><topic>Studies</topic><topic>Tensile strength</topic><topic>Transgranular fracture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paggi, M.</creatorcontrib><creatorcontrib>Corrado, M.</creatorcontrib><creatorcontrib>Reinoso, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paggi, M.</au><au>Corrado, M.</au><au>Reinoso, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>330</volume><spage>123</spage><epage>148</epage><pages>123-148</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This work presents a novel computational framework to simulate fracture events in brittle anisotropic polycrystalline materials at the microscopical level, with application to solar-grade polycrystalline Silicon. Quasi-static failure is modeled by combining the phase field approach of brittle fracture (for transgranular fracture) with the cohesive zone model for the grain boundaries (for intergranular fracture) through the generalization of the recent FE-based technique published in [M. Paggi, J. Reinoso, Comput. Methods Appl. Mech. Engrg., 31 (2017) 145–172] to deal with anisotropic polycrystalline microstructures. The proposed model, which accounts for any anisotropic constitutive tensor for the grains depending on their preferential orientation, as well as an orientation-dependent fracture toughness, allows to simulate intergranular and transgranular crack growths in an efficient manner, with or without initial defects. One of the advantages of the current variational method is the fact that complex crack patterns in such materials are triggered without any user-intervention, being possible to account for the competition between both dissipative phenomena. In addition, further aspects with regard to the model parameters identification are discussed in reference to solar cells images obtained from transmitted light source. A series of representative numerical simulations is carried out to highlight the interplay between the different types of fracture occurring in solar-grade polycrystalline Silicon, and to assess the role of anisotropy on the crack path and on the apparent tensile strength of the material.
[Display omitted]
•Combined phase-field and cohesive zone model for fracture.•Transgranular and intergranular fracture in solar-grade Silicon.•Anisotropic phase field model for fracture.•Identification of polycrystalline Silicon mechanical parameters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2017.10.021</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-9409-9782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2018-03, Vol.330, p.123-148 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2029418406 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropic elasticity Anisotropy Brittle fracture Cohesive zone model Computer simulation Crystal defects Crystallization Finite element method Fracture toughness Grain boundaries Image transmission Intergranular fracture Mathematical models Parameter identification Phase field modeling of fracture Photovoltaic cells Polycrystals Silicon Solar cells Solar-grade polycrystalline silicon Studies Tensile strength Transgranular fracture |
title | Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20of%20solar-grade%20anisotropic%20polycrystalline%20Silicon:%20A%20combined%20phase%20field%E2%80%93cohesive%20zone%20model%20approach&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Paggi,%20M.&rft.date=2018-03-01&rft.volume=330&rft.spage=123&rft.epage=148&rft.pages=123-148&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2017.10.021&rft_dat=%3Cproquest_cross%3E2029418406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2029418406&rft_id=info:pmid/&rft_els_id=S0045782517306928&rfr_iscdi=true |