Dynamics and simulations of a stochastic predator-prey model with infinite delay and impulsive perturbations

This paper considers a stochastic predator-prey model with infinite delay and impulsive perturbations. Sufficient conditions for permanence in time average are established as well as extinction, stability in time average and global attractivity of the stochasic model. Some simulation figures, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2018-06, Vol.57 (1-2), p.437-465
Hauptverfasser: Lu, Chun, Chen, Jian, Fan, Xingkui, Zhang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 1-2
container_start_page 437
container_title Journal of applied mathematics & computing
container_volume 57
creator Lu, Chun
Chen, Jian
Fan, Xingkui
Zhang, Lei
description This paper considers a stochastic predator-prey model with infinite delay and impulsive perturbations. Sufficient conditions for permanence in time average are established as well as extinction, stability in time average and global attractivity of the stochasic model. Some simulation figures, which are obtained by the split-step θ -method to discretize the stochasic model, are introduced to support the analytical findings. Our results demonstrate that, firstly, impulsive perturbations which may represent human factor play a key role in maintaining ecological balance; secondly, environmental noise, which can be modelled by Brownian motion, is disadvantageous to population survival; finally, infinite delay has not affect permanence in time average, extinction, stability in time average and global attractivity of the stochasic model.
doi_str_mv 10.1007/s12190-017-1114-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2029394132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2029394132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-572e81708fcf27fd5f46ce434e8b1cba42f87f05daf6bde09d9e6d7bf4090ea3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19EkfaRZyviEATezD2keToa2qUmq9N-bsYIrV_dwOOdc-AC4JviWYMzuIqGEY4QJQ4SQEhUnYEWaukIUN9Vp1hVvUJWNc3AR4wHjmnHMV6B7mAfZOxWhHDSMrp86mZwfIvQWShiTV3sZk1NwDEbL5APKYoa916aDXy7toRusG1wyMDty_tlx_Th10X0aOJqQptAum5fgzMoumqvfuwa7p8fd5gVt355fN_dbpApSJ1QxahrCcGOVpczqypa1MmVRmqYlqpUltQ2zuNLS1q02mGtuas1aW2KOjSzW4GaZHYP_mExM4uCnMOSPgmLKC16SguYUWVIq-BiDsWIMrpdhFgSLI1OxMBWZqTgyFUXu0KUTc3Z4N-Fv-f_SN4gMfII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029394132</pqid></control><display><type>article</type><title>Dynamics and simulations of a stochastic predator-prey model with infinite delay and impulsive perturbations</title><source>SpringerLink Journals</source><creator>Lu, Chun ; Chen, Jian ; Fan, Xingkui ; Zhang, Lei</creator><creatorcontrib>Lu, Chun ; Chen, Jian ; Fan, Xingkui ; Zhang, Lei</creatorcontrib><description>This paper considers a stochastic predator-prey model with infinite delay and impulsive perturbations. Sufficient conditions for permanence in time average are established as well as extinction, stability in time average and global attractivity of the stochasic model. Some simulation figures, which are obtained by the split-step θ -method to discretize the stochasic model, are introduced to support the analytical findings. Our results demonstrate that, firstly, impulsive perturbations which may represent human factor play a key role in maintaining ecological balance; secondly, environmental noise, which can be modelled by Brownian motion, is disadvantageous to population survival; finally, infinite delay has not affect permanence in time average, extinction, stability in time average and global attractivity of the stochasic model.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-017-1114-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Background noise ; Brownian motion ; Computational Mathematics and Numerical Analysis ; Computer simulation ; Delay ; Extinction ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Original Research ; Predator-prey simulation ; Stability ; Stochastic models ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2018-06, Vol.57 (1-2), p.437-465</ispartof><rights>Korean Society for Computational and Applied Mathematics 2017</rights><rights>Journal of Applied Mathematics and Computing is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-572e81708fcf27fd5f46ce434e8b1cba42f87f05daf6bde09d9e6d7bf4090ea3</citedby><cites>FETCH-LOGICAL-c316t-572e81708fcf27fd5f46ce434e8b1cba42f87f05daf6bde09d9e6d7bf4090ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-017-1114-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-017-1114-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Chun</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Fan, Xingkui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><title>Dynamics and simulations of a stochastic predator-prey model with infinite delay and impulsive perturbations</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>This paper considers a stochastic predator-prey model with infinite delay and impulsive perturbations. Sufficient conditions for permanence in time average are established as well as extinction, stability in time average and global attractivity of the stochasic model. Some simulation figures, which are obtained by the split-step θ -method to discretize the stochasic model, are introduced to support the analytical findings. Our results demonstrate that, firstly, impulsive perturbations which may represent human factor play a key role in maintaining ecological balance; secondly, environmental noise, which can be modelled by Brownian motion, is disadvantageous to population survival; finally, infinite delay has not affect permanence in time average, extinction, stability in time average and global attractivity of the stochasic model.</description><subject>Applied mathematics</subject><subject>Background noise</subject><subject>Brownian motion</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Delay</subject><subject>Extinction</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Original Research</subject><subject>Predator-prey simulation</subject><subject>Stability</subject><subject>Stochastic models</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19EkfaRZyviEATezD2keToa2qUmq9N-bsYIrV_dwOOdc-AC4JviWYMzuIqGEY4QJQ4SQEhUnYEWaukIUN9Vp1hVvUJWNc3AR4wHjmnHMV6B7mAfZOxWhHDSMrp86mZwfIvQWShiTV3sZk1NwDEbL5APKYoa916aDXy7toRusG1wyMDty_tlx_Th10X0aOJqQptAum5fgzMoumqvfuwa7p8fd5gVt355fN_dbpApSJ1QxahrCcGOVpczqypa1MmVRmqYlqpUltQ2zuNLS1q02mGtuas1aW2KOjSzW4GaZHYP_mExM4uCnMOSPgmLKC16SguYUWVIq-BiDsWIMrpdhFgSLI1OxMBWZqTgyFUXu0KUTc3Z4N-Fv-f_SN4gMfII</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Lu, Chun</creator><creator>Chen, Jian</creator><creator>Fan, Xingkui</creator><creator>Zhang, Lei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Dynamics and simulations of a stochastic predator-prey model with infinite delay and impulsive perturbations</title><author>Lu, Chun ; Chen, Jian ; Fan, Xingkui ; Zhang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-572e81708fcf27fd5f46ce434e8b1cba42f87f05daf6bde09d9e6d7bf4090ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Background noise</topic><topic>Brownian motion</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Delay</topic><topic>Extinction</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Original Research</topic><topic>Predator-prey simulation</topic><topic>Stability</topic><topic>Stochastic models</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chun</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Fan, Xingkui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Chun</au><au>Chen, Jian</au><au>Fan, Xingkui</au><au>Zhang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and simulations of a stochastic predator-prey model with infinite delay and impulsive perturbations</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>57</volume><issue>1-2</issue><spage>437</spage><epage>465</epage><pages>437-465</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>This paper considers a stochastic predator-prey model with infinite delay and impulsive perturbations. Sufficient conditions for permanence in time average are established as well as extinction, stability in time average and global attractivity of the stochasic model. Some simulation figures, which are obtained by the split-step θ -method to discretize the stochasic model, are introduced to support the analytical findings. Our results demonstrate that, firstly, impulsive perturbations which may represent human factor play a key role in maintaining ecological balance; secondly, environmental noise, which can be modelled by Brownian motion, is disadvantageous to population survival; finally, infinite delay has not affect permanence in time average, extinction, stability in time average and global attractivity of the stochasic model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-017-1114-3</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2018-06, Vol.57 (1-2), p.437-465
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_2029394132
source SpringerLink Journals
subjects Applied mathematics
Background noise
Brownian motion
Computational Mathematics and Numerical Analysis
Computer simulation
Delay
Extinction
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Original Research
Predator-prey simulation
Stability
Stochastic models
Theory of Computation
title Dynamics and simulations of a stochastic predator-prey model with infinite delay and impulsive perturbations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20simulations%20of%20a%20stochastic%20predator-prey%20model%20with%20infinite%20delay%20and%20impulsive%20perturbations&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Lu,%20Chun&rft.date=2018-06-01&rft.volume=57&rft.issue=1-2&rft.spage=437&rft.epage=465&rft.pages=437-465&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-017-1114-3&rft_dat=%3Cproquest_cross%3E2029394132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2029394132&rft_id=info:pmid/&rfr_iscdi=true