Automatic Identification of Power System Load Models Based on Field Measurements
With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2018-05, Vol.33 (3), p.3162-3171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3171 |
---|---|
container_issue | 3 |
container_start_page | 3162 |
container_title | IEEE transactions on power systems |
container_volume | 33 |
creator | Zhu, Yue Milanovic, Jovica V. |
description | With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent automate the task of load modeling, this paper presents a methodology and associated software tool-Automated Load Modeling Tool to automatically (without human intervention) develop load models and derive corresponding model parameters from recorded power system responses. The approach facilitates automatic identification of load models and derivation of corresponding parameters for three different types of load models, i.e., polynomial, dynamic exponential, and composite load model. Several case studies using real life measurements at 11 kV distribution buses are used to test and validate developed methodology and software tool. |
doi_str_mv | 10.1109/TPWRS.2017.2763752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2029142635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8070973</ieee_id><sourcerecordid>2029142635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8f91e27ef97d7979c084fd1f719e67145ee35d368a614b52ba63ebb2ff37a5373</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1vzsfk6VrFaqFhsxWPI7k5gS7epyRbpvze1xdMwM-8zAw9Ct5SMKCXmYTn_-liMGKFqxJTkSrAzNKBC6IJIZc7RgGgtCm0EuURXKa0IITIvBmg-3vWhc31b42kDm771bZ27sMHB43n4gYgX-9RDh2fBNfgtNLBO-NElaHAOTVpY5ym4tIvQZT5dowvv1gluTnWIPifPy6fXYvb-Mn0az4qac9MX2hsKTIE3qlFGmZro0jfUK2pAKloKAC4aLrWTtKwEq5zkUFXMe66c4IoP0f3x7jaG7x2k3q7CLm7yS8sIM7RkkoucYsdUHUNKEbzdxrZzcW8psQdz9s-cPZizJ3MZujtCLQD8A5ooYhTnv_Doafw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029142635</pqid></control><display><type>article</type><title>Automatic Identification of Power System Load Models Based on Field Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Yue ; Milanovic, Jovica V.</creator><creatorcontrib>Zhu, Yue ; Milanovic, Jovica V.</creatorcontrib><description>With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent automate the task of load modeling, this paper presents a methodology and associated software tool-Automated Load Modeling Tool to automatically (without human intervention) develop load models and derive corresponding model parameters from recorded power system responses. The approach facilitates automatic identification of load models and derivation of corresponding parameters for three different types of load models, i.e., polynomial, dynamic exponential, and composite load model. Several case studies using real life measurements at 11 kV distribution buses are used to test and validate developed methodology and software tool.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2017.2763752</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active filters ; Automatic identification ; Automation ; data filtering ; Data models ; Electric power grids ; Load ; Load modeling ; Load modelling ; Modelling ; optimisation ; Parameter identification ; Power filters ; Power system dynamics ; Software development tools ; Test procedures</subject><ispartof>IEEE transactions on power systems, 2018-05, Vol.33 (3), p.3162-3171</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-8f91e27ef97d7979c084fd1f719e67145ee35d368a614b52ba63ebb2ff37a5373</citedby><cites>FETCH-LOGICAL-c339t-8f91e27ef97d7979c084fd1f719e67145ee35d368a614b52ba63ebb2ff37a5373</cites><orcidid>0000-0002-8815-5765 ; 0000-0002-0931-137X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8070973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8070973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Yue</creatorcontrib><creatorcontrib>Milanovic, Jovica V.</creatorcontrib><title>Automatic Identification of Power System Load Models Based on Field Measurements</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent automate the task of load modeling, this paper presents a methodology and associated software tool-Automated Load Modeling Tool to automatically (without human intervention) develop load models and derive corresponding model parameters from recorded power system responses. The approach facilitates automatic identification of load models and derivation of corresponding parameters for three different types of load models, i.e., polynomial, dynamic exponential, and composite load model. Several case studies using real life measurements at 11 kV distribution buses are used to test and validate developed methodology and software tool.</description><subject>Active filters</subject><subject>Automatic identification</subject><subject>Automation</subject><subject>data filtering</subject><subject>Data models</subject><subject>Electric power grids</subject><subject>Load</subject><subject>Load modeling</subject><subject>Load modelling</subject><subject>Modelling</subject><subject>optimisation</subject><subject>Parameter identification</subject><subject>Power filters</subject><subject>Power system dynamics</subject><subject>Software development tools</subject><subject>Test procedures</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1vzsfk6VrFaqFhsxWPI7k5gS7epyRbpvze1xdMwM-8zAw9Ct5SMKCXmYTn_-liMGKFqxJTkSrAzNKBC6IJIZc7RgGgtCm0EuURXKa0IITIvBmg-3vWhc31b42kDm771bZ27sMHB43n4gYgX-9RDh2fBNfgtNLBO-NElaHAOTVpY5ym4tIvQZT5dowvv1gluTnWIPifPy6fXYvb-Mn0az4qac9MX2hsKTIE3qlFGmZro0jfUK2pAKloKAC4aLrWTtKwEq5zkUFXMe66c4IoP0f3x7jaG7x2k3q7CLm7yS8sIM7RkkoucYsdUHUNKEbzdxrZzcW8psQdz9s-cPZizJ3MZujtCLQD8A5ooYhTnv_Doafw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Zhu, Yue</creator><creator>Milanovic, Jovica V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8815-5765</orcidid><orcidid>https://orcid.org/0000-0002-0931-137X</orcidid></search><sort><creationdate>201805</creationdate><title>Automatic Identification of Power System Load Models Based on Field Measurements</title><author>Zhu, Yue ; Milanovic, Jovica V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8f91e27ef97d7979c084fd1f719e67145ee35d368a614b52ba63ebb2ff37a5373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active filters</topic><topic>Automatic identification</topic><topic>Automation</topic><topic>data filtering</topic><topic>Data models</topic><topic>Electric power grids</topic><topic>Load</topic><topic>Load modeling</topic><topic>Load modelling</topic><topic>Modelling</topic><topic>optimisation</topic><topic>Parameter identification</topic><topic>Power filters</topic><topic>Power system dynamics</topic><topic>Software development tools</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yue</creatorcontrib><creatorcontrib>Milanovic, Jovica V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yue</au><au>Milanovic, Jovica V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Identification of Power System Load Models Based on Field Measurements</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2018-05</date><risdate>2018</risdate><volume>33</volume><issue>3</issue><spage>3162</spage><epage>3171</epage><pages>3162-3171</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent automate the task of load modeling, this paper presents a methodology and associated software tool-Automated Load Modeling Tool to automatically (without human intervention) develop load models and derive corresponding model parameters from recorded power system responses. The approach facilitates automatic identification of load models and derivation of corresponding parameters for three different types of load models, i.e., polynomial, dynamic exponential, and composite load model. Several case studies using real life measurements at 11 kV distribution buses are used to test and validate developed methodology and software tool.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2017.2763752</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8815-5765</orcidid><orcidid>https://orcid.org/0000-0002-0931-137X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2018-05, Vol.33 (3), p.3162-3171 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_2029142635 |
source | IEEE Electronic Library (IEL) |
subjects | Active filters Automatic identification Automation data filtering Data models Electric power grids Load Load modeling Load modelling Modelling optimisation Parameter identification Power filters Power system dynamics Software development tools Test procedures |
title | Automatic Identification of Power System Load Models Based on Field Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Identification%20of%20Power%20System%20Load%20Models%20Based%20on%20Field%20Measurements&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Zhu,%20Yue&rft.date=2018-05&rft.volume=33&rft.issue=3&rft.spage=3162&rft.epage=3171&rft.pages=3162-3171&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2017.2763752&rft_dat=%3Cproquest_RIE%3E2029142635%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2029142635&rft_id=info:pmid/&rft_ieee_id=8070973&rfr_iscdi=true |