Automatic Identification of Power System Load Models Based on Field Measurements

With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2018-05, Vol.33 (3), p.3162-3171
Hauptverfasser: Zhu, Yue, Milanovic, Jovica V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3171
container_issue 3
container_start_page 3162
container_title IEEE transactions on power systems
container_volume 33
creator Zhu, Yue
Milanovic, Jovica V.
description With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent automate the task of load modeling, this paper presents a methodology and associated software tool-Automated Load Modeling Tool to automatically (without human intervention) develop load models and derive corresponding model parameters from recorded power system responses. The approach facilitates automatic identification of load models and derivation of corresponding parameters for three different types of load models, i.e., polynomial, dynamic exponential, and composite load model. Several case studies using real life measurements at 11 kV distribution buses are used to test and validate developed methodology and software tool.
doi_str_mv 10.1109/TPWRS.2017.2763752
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2029142635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8070973</ieee_id><sourcerecordid>2029142635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8f91e27ef97d7979c084fd1f719e67145ee35d368a614b52ba63ebb2ff37a5373</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1vzsfk6VrFaqFhsxWPI7k5gS7epyRbpvze1xdMwM-8zAw9Ct5SMKCXmYTn_-liMGKFqxJTkSrAzNKBC6IJIZc7RgGgtCm0EuURXKa0IITIvBmg-3vWhc31b42kDm771bZ27sMHB43n4gYgX-9RDh2fBNfgtNLBO-NElaHAOTVpY5ym4tIvQZT5dowvv1gluTnWIPifPy6fXYvb-Mn0az4qac9MX2hsKTIE3qlFGmZro0jfUK2pAKloKAC4aLrWTtKwEq5zkUFXMe66c4IoP0f3x7jaG7x2k3q7CLm7yS8sIM7RkkoucYsdUHUNKEbzdxrZzcW8psQdz9s-cPZizJ3MZujtCLQD8A5ooYhTnv_Doafw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029142635</pqid></control><display><type>article</type><title>Automatic Identification of Power System Load Models Based on Field Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Yue ; Milanovic, Jovica V.</creator><creatorcontrib>Zhu, Yue ; Milanovic, Jovica V.</creatorcontrib><description>With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent automate the task of load modeling, this paper presents a methodology and associated software tool-Automated Load Modeling Tool to automatically (without human intervention) develop load models and derive corresponding model parameters from recorded power system responses. The approach facilitates automatic identification of load models and derivation of corresponding parameters for three different types of load models, i.e., polynomial, dynamic exponential, and composite load model. Several case studies using real life measurements at 11 kV distribution buses are used to test and validate developed methodology and software tool.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2017.2763752</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active filters ; Automatic identification ; Automation ; data filtering ; Data models ; Electric power grids ; Load ; Load modeling ; Load modelling ; Modelling ; optimisation ; Parameter identification ; Power filters ; Power system dynamics ; Software development tools ; Test procedures</subject><ispartof>IEEE transactions on power systems, 2018-05, Vol.33 (3), p.3162-3171</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-8f91e27ef97d7979c084fd1f719e67145ee35d368a614b52ba63ebb2ff37a5373</citedby><cites>FETCH-LOGICAL-c339t-8f91e27ef97d7979c084fd1f719e67145ee35d368a614b52ba63ebb2ff37a5373</cites><orcidid>0000-0002-8815-5765 ; 0000-0002-0931-137X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8070973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8070973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Yue</creatorcontrib><creatorcontrib>Milanovic, Jovica V.</creatorcontrib><title>Automatic Identification of Power System Load Models Based on Field Measurements</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent automate the task of load modeling, this paper presents a methodology and associated software tool-Automated Load Modeling Tool to automatically (without human intervention) develop load models and derive corresponding model parameters from recorded power system responses. The approach facilitates automatic identification of load models and derivation of corresponding parameters for three different types of load models, i.e., polynomial, dynamic exponential, and composite load model. Several case studies using real life measurements at 11 kV distribution buses are used to test and validate developed methodology and software tool.</description><subject>Active filters</subject><subject>Automatic identification</subject><subject>Automation</subject><subject>data filtering</subject><subject>Data models</subject><subject>Electric power grids</subject><subject>Load</subject><subject>Load modeling</subject><subject>Load modelling</subject><subject>Modelling</subject><subject>optimisation</subject><subject>Parameter identification</subject><subject>Power filters</subject><subject>Power system dynamics</subject><subject>Software development tools</subject><subject>Test procedures</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1vzsfk6VrFaqFhsxWPI7k5gS7epyRbpvze1xdMwM-8zAw9Ct5SMKCXmYTn_-liMGKFqxJTkSrAzNKBC6IJIZc7RgGgtCm0EuURXKa0IITIvBmg-3vWhc31b42kDm771bZ27sMHB43n4gYgX-9RDh2fBNfgtNLBO-NElaHAOTVpY5ym4tIvQZT5dowvv1gluTnWIPifPy6fXYvb-Mn0az4qac9MX2hsKTIE3qlFGmZro0jfUK2pAKloKAC4aLrWTtKwEq5zkUFXMe66c4IoP0f3x7jaG7x2k3q7CLm7yS8sIM7RkkoucYsdUHUNKEbzdxrZzcW8psQdz9s-cPZizJ3MZujtCLQD8A5ooYhTnv_Doafw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Zhu, Yue</creator><creator>Milanovic, Jovica V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8815-5765</orcidid><orcidid>https://orcid.org/0000-0002-0931-137X</orcidid></search><sort><creationdate>201805</creationdate><title>Automatic Identification of Power System Load Models Based on Field Measurements</title><author>Zhu, Yue ; Milanovic, Jovica V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8f91e27ef97d7979c084fd1f719e67145ee35d368a614b52ba63ebb2ff37a5373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active filters</topic><topic>Automatic identification</topic><topic>Automation</topic><topic>data filtering</topic><topic>Data models</topic><topic>Electric power grids</topic><topic>Load</topic><topic>Load modeling</topic><topic>Load modelling</topic><topic>Modelling</topic><topic>optimisation</topic><topic>Parameter identification</topic><topic>Power filters</topic><topic>Power system dynamics</topic><topic>Software development tools</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yue</creatorcontrib><creatorcontrib>Milanovic, Jovica V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yue</au><au>Milanovic, Jovica V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Identification of Power System Load Models Based on Field Measurements</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2018-05</date><risdate>2018</risdate><volume>33</volume><issue>3</issue><spage>3162</spage><epage>3171</epage><pages>3162-3171</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>With an ever growing complexity, the power grids are designed and operated with an increasingly reduced stability margin. Under such circumstances, the adequate modeling of existing and new power system loads, with all its challenges, is receiving renewed attention. To simplify and to large extent automate the task of load modeling, this paper presents a methodology and associated software tool-Automated Load Modeling Tool to automatically (without human intervention) develop load models and derive corresponding model parameters from recorded power system responses. The approach facilitates automatic identification of load models and derivation of corresponding parameters for three different types of load models, i.e., polynomial, dynamic exponential, and composite load model. Several case studies using real life measurements at 11 kV distribution buses are used to test and validate developed methodology and software tool.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2017.2763752</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8815-5765</orcidid><orcidid>https://orcid.org/0000-0002-0931-137X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2018-05, Vol.33 (3), p.3162-3171
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2029142635
source IEEE Electronic Library (IEL)
subjects Active filters
Automatic identification
Automation
data filtering
Data models
Electric power grids
Load
Load modeling
Load modelling
Modelling
optimisation
Parameter identification
Power filters
Power system dynamics
Software development tools
Test procedures
title Automatic Identification of Power System Load Models Based on Field Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Identification%20of%20Power%20System%20Load%20Models%20Based%20on%20Field%20Measurements&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Zhu,%20Yue&rft.date=2018-05&rft.volume=33&rft.issue=3&rft.spage=3162&rft.epage=3171&rft.pages=3162-3171&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2017.2763752&rft_dat=%3Cproquest_RIE%3E2029142635%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2029142635&rft_id=info:pmid/&rft_ieee_id=8070973&rfr_iscdi=true