3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect‐Induced Lattice Engineering

The ability to manipulate the metal–insulator transition (MIT) of metal oxides is of critical importance for fundamental investigations of electron correlations and practical implementations of power efficient tunable electrical and optical devices. Most of the existing techniques including chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2018-04, Vol.5 (8), p.n/a
Hauptverfasser: Jia, Qi, Grenzer, Jörg, He, Huabing, Anwand, Wolfgang, Ji, Yanda, Yuan, Ye, Huang, Kai, You, Tiangui, Yu, Wenjie, Ren, Wei, Chen, Xinzhong, Liu, Mengkun, Facsko, Stefan, Wang, Xi, Ou, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced materials interfaces
container_volume 5
creator Jia, Qi
Grenzer, Jörg
He, Huabing
Anwand, Wolfgang
Ji, Yanda
Yuan, Ye
Huang, Kai
You, Tiangui
Yu, Wenjie
Ren, Wei
Chen, Xinzhong
Liu, Mengkun
Facsko, Stefan
Wang, Xi
Ou, Xin
description The ability to manipulate the metal–insulator transition (MIT) of metal oxides is of critical importance for fundamental investigations of electron correlations and practical implementations of power efficient tunable electrical and optical devices. Most of the existing techniques including chemical doping and epitaxial strain modification can only modify the global transition temperature, while the capability to locally manipulate MIT is still lacking for developing highly integrated functional devices. Here, lattice engineering induced by the energetic noble gas ion allowing a 3D local manipulation of the MIT in VO2 films is demonstrated and a spatial resolution laterally within the micrometer scale is reached. Ion‐induced open volume defects efficiently modify the lattice constants of VO2 and consequently reduce the MIT temperature continuously from 341 to 275 K. According to a density functional theory calculation, the effect of lattice constant variation reduces the phase change energy barrier and therefore triggers the MIT at a much lower temperature. VO2 films with multiple transitions in both in‐plane and out‐of‐plane dimensions can be achieved by implantation through a shadow mask or multienergy implantation. Based on this method, temperature‐controlled VO2 metasurface structure is demonstrated by tuning only locally the MIT behavior on the VO2 surfaces. The metal–insulator transition (MIT) temperature of VO2 thin film is dramatically reduced by noble gas ion implantation. VO2 film with multi‐MIT processes in both in‐plane and out‐of‐plane dimensions is achieved by implantation through a patterned surface or by multienergy implantation, which allows to manipulate the phase transition process of VO2 film at any site in 3D space.
doi_str_mv 10.1002/admi.201701268
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2028972374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2028972374</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2998-65df59dc38b51cb18b891cdd5847a90dc47bfed3d632752982fdb50b84bb3fb13</originalsourceid><addsrcrecordid>eNpNkMlKA0EQhhtRMMRcPTd4ntjLLN3HmEUHJuQSvTa9TdJh0hNnUYKXPILgG-ZJnBgRT_VX1UcVfADcYjTECJF7abZuSBBOECYxuwA9gnkcJDRCl__yNRjU9QYhhDHBhNEe-KATmJVaFnAuvdu1hWxc6WGZw2Zt4dw2sjgevlJfnzZlBZeV9LX7YR7sWr65buY8fFkQuFx3YeaKLVR7OLG51c3x8Jl602prYCabxmkLp37lvLWV86sbcJXLoraD39oHz7PpcvwUZIvHdDzKgg3hnAVxZPKIG02ZirBWmCnGsTYmYmEiOTI6TFRuDTUxJUlEOCO5URFSLFSK5grTPrg7391V5Wtr60Zsyrby3UtBEGE8ITQJO4qfqXdX2L3YVW4rq73ASJwEi5Ng8SdYjCbz9K-j33Ytc44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028972374</pqid></control><display><type>article</type><title>3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect‐Induced Lattice Engineering</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jia, Qi ; Grenzer, Jörg ; He, Huabing ; Anwand, Wolfgang ; Ji, Yanda ; Yuan, Ye ; Huang, Kai ; You, Tiangui ; Yu, Wenjie ; Ren, Wei ; Chen, Xinzhong ; Liu, Mengkun ; Facsko, Stefan ; Wang, Xi ; Ou, Xin</creator><creatorcontrib>Jia, Qi ; Grenzer, Jörg ; He, Huabing ; Anwand, Wolfgang ; Ji, Yanda ; Yuan, Ye ; Huang, Kai ; You, Tiangui ; Yu, Wenjie ; Ren, Wei ; Chen, Xinzhong ; Liu, Mengkun ; Facsko, Stefan ; Wang, Xi ; Ou, Xin</creatorcontrib><description>The ability to manipulate the metal–insulator transition (MIT) of metal oxides is of critical importance for fundamental investigations of electron correlations and practical implementations of power efficient tunable electrical and optical devices. Most of the existing techniques including chemical doping and epitaxial strain modification can only modify the global transition temperature, while the capability to locally manipulate MIT is still lacking for developing highly integrated functional devices. Here, lattice engineering induced by the energetic noble gas ion allowing a 3D local manipulation of the MIT in VO2 films is demonstrated and a spatial resolution laterally within the micrometer scale is reached. Ion‐induced open volume defects efficiently modify the lattice constants of VO2 and consequently reduce the MIT temperature continuously from 341 to 275 K. According to a density functional theory calculation, the effect of lattice constant variation reduces the phase change energy barrier and therefore triggers the MIT at a much lower temperature. VO2 films with multiple transitions in both in‐plane and out‐of‐plane dimensions can be achieved by implantation through a shadow mask or multienergy implantation. Based on this method, temperature‐controlled VO2 metasurface structure is demonstrated by tuning only locally the MIT behavior on the VO2 surfaces. The metal–insulator transition (MIT) temperature of VO2 thin film is dramatically reduced by noble gas ion implantation. VO2 film with multi‐MIT processes in both in‐plane and out‐of‐plane dimensions is achieved by implantation through a patterned surface or by multienergy implantation, which allows to manipulate the phase transition process of VO2 film at any site in 3D space.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201701268</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Density functional theory ; Implantation ; lattice engineering ; Lattice parameters ; Metal-insulator transition ; open volume defect ; Phase transitions ; Rare gases ; Shadow masks ; Spatial resolution ; Transition temperature ; vanadium dioxide ; Vanadium oxides</subject><ispartof>Advanced materials interfaces, 2018-04, Vol.5 (8), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201701268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201701268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jia, Qi</creatorcontrib><creatorcontrib>Grenzer, Jörg</creatorcontrib><creatorcontrib>He, Huabing</creatorcontrib><creatorcontrib>Anwand, Wolfgang</creatorcontrib><creatorcontrib>Ji, Yanda</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>You, Tiangui</creatorcontrib><creatorcontrib>Yu, Wenjie</creatorcontrib><creatorcontrib>Ren, Wei</creatorcontrib><creatorcontrib>Chen, Xinzhong</creatorcontrib><creatorcontrib>Liu, Mengkun</creatorcontrib><creatorcontrib>Facsko, Stefan</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Ou, Xin</creatorcontrib><title>3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect‐Induced Lattice Engineering</title><title>Advanced materials interfaces</title><description>The ability to manipulate the metal–insulator transition (MIT) of metal oxides is of critical importance for fundamental investigations of electron correlations and practical implementations of power efficient tunable electrical and optical devices. Most of the existing techniques including chemical doping and epitaxial strain modification can only modify the global transition temperature, while the capability to locally manipulate MIT is still lacking for developing highly integrated functional devices. Here, lattice engineering induced by the energetic noble gas ion allowing a 3D local manipulation of the MIT in VO2 films is demonstrated and a spatial resolution laterally within the micrometer scale is reached. Ion‐induced open volume defects efficiently modify the lattice constants of VO2 and consequently reduce the MIT temperature continuously from 341 to 275 K. According to a density functional theory calculation, the effect of lattice constant variation reduces the phase change energy barrier and therefore triggers the MIT at a much lower temperature. VO2 films with multiple transitions in both in‐plane and out‐of‐plane dimensions can be achieved by implantation through a shadow mask or multienergy implantation. Based on this method, temperature‐controlled VO2 metasurface structure is demonstrated by tuning only locally the MIT behavior on the VO2 surfaces. The metal–insulator transition (MIT) temperature of VO2 thin film is dramatically reduced by noble gas ion implantation. VO2 film with multi‐MIT processes in both in‐plane and out‐of‐plane dimensions is achieved by implantation through a patterned surface or by multienergy implantation, which allows to manipulate the phase transition process of VO2 film at any site in 3D space.</description><subject>Density functional theory</subject><subject>Implantation</subject><subject>lattice engineering</subject><subject>Lattice parameters</subject><subject>Metal-insulator transition</subject><subject>open volume defect</subject><subject>Phase transitions</subject><subject>Rare gases</subject><subject>Shadow masks</subject><subject>Spatial resolution</subject><subject>Transition temperature</subject><subject>vanadium dioxide</subject><subject>Vanadium oxides</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkMlKA0EQhhtRMMRcPTd4ntjLLN3HmEUHJuQSvTa9TdJh0hNnUYKXPILgG-ZJnBgRT_VX1UcVfADcYjTECJF7abZuSBBOECYxuwA9gnkcJDRCl__yNRjU9QYhhDHBhNEe-KATmJVaFnAuvdu1hWxc6WGZw2Zt4dw2sjgevlJfnzZlBZeV9LX7YR7sWr65buY8fFkQuFx3YeaKLVR7OLG51c3x8Jl602prYCabxmkLp37lvLWV86sbcJXLoraD39oHz7PpcvwUZIvHdDzKgg3hnAVxZPKIG02ZirBWmCnGsTYmYmEiOTI6TFRuDTUxJUlEOCO5URFSLFSK5grTPrg7391V5Wtr60Zsyrby3UtBEGE8ITQJO4qfqXdX2L3YVW4rq73ASJwEi5Ng8SdYjCbz9K-j33Ytc44</recordid><startdate>20180423</startdate><enddate>20180423</enddate><creator>Jia, Qi</creator><creator>Grenzer, Jörg</creator><creator>He, Huabing</creator><creator>Anwand, Wolfgang</creator><creator>Ji, Yanda</creator><creator>Yuan, Ye</creator><creator>Huang, Kai</creator><creator>You, Tiangui</creator><creator>Yu, Wenjie</creator><creator>Ren, Wei</creator><creator>Chen, Xinzhong</creator><creator>Liu, Mengkun</creator><creator>Facsko, Stefan</creator><creator>Wang, Xi</creator><creator>Ou, Xin</creator><general>John Wiley &amp; Sons, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180423</creationdate><title>3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect‐Induced Lattice Engineering</title><author>Jia, Qi ; Grenzer, Jörg ; He, Huabing ; Anwand, Wolfgang ; Ji, Yanda ; Yuan, Ye ; Huang, Kai ; You, Tiangui ; Yu, Wenjie ; Ren, Wei ; Chen, Xinzhong ; Liu, Mengkun ; Facsko, Stefan ; Wang, Xi ; Ou, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2998-65df59dc38b51cb18b891cdd5847a90dc47bfed3d632752982fdb50b84bb3fb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Density functional theory</topic><topic>Implantation</topic><topic>lattice engineering</topic><topic>Lattice parameters</topic><topic>Metal-insulator transition</topic><topic>open volume defect</topic><topic>Phase transitions</topic><topic>Rare gases</topic><topic>Shadow masks</topic><topic>Spatial resolution</topic><topic>Transition temperature</topic><topic>vanadium dioxide</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Qi</creatorcontrib><creatorcontrib>Grenzer, Jörg</creatorcontrib><creatorcontrib>He, Huabing</creatorcontrib><creatorcontrib>Anwand, Wolfgang</creatorcontrib><creatorcontrib>Ji, Yanda</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>You, Tiangui</creatorcontrib><creatorcontrib>Yu, Wenjie</creatorcontrib><creatorcontrib>Ren, Wei</creatorcontrib><creatorcontrib>Chen, Xinzhong</creatorcontrib><creatorcontrib>Liu, Mengkun</creatorcontrib><creatorcontrib>Facsko, Stefan</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Ou, Xin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Qi</au><au>Grenzer, Jörg</au><au>He, Huabing</au><au>Anwand, Wolfgang</au><au>Ji, Yanda</au><au>Yuan, Ye</au><au>Huang, Kai</au><au>You, Tiangui</au><au>Yu, Wenjie</au><au>Ren, Wei</au><au>Chen, Xinzhong</au><au>Liu, Mengkun</au><au>Facsko, Stefan</au><au>Wang, Xi</au><au>Ou, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect‐Induced Lattice Engineering</atitle><jtitle>Advanced materials interfaces</jtitle><date>2018-04-23</date><risdate>2018</risdate><volume>5</volume><issue>8</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>The ability to manipulate the metal–insulator transition (MIT) of metal oxides is of critical importance for fundamental investigations of electron correlations and practical implementations of power efficient tunable electrical and optical devices. Most of the existing techniques including chemical doping and epitaxial strain modification can only modify the global transition temperature, while the capability to locally manipulate MIT is still lacking for developing highly integrated functional devices. Here, lattice engineering induced by the energetic noble gas ion allowing a 3D local manipulation of the MIT in VO2 films is demonstrated and a spatial resolution laterally within the micrometer scale is reached. Ion‐induced open volume defects efficiently modify the lattice constants of VO2 and consequently reduce the MIT temperature continuously from 341 to 275 K. According to a density functional theory calculation, the effect of lattice constant variation reduces the phase change energy barrier and therefore triggers the MIT at a much lower temperature. VO2 films with multiple transitions in both in‐plane and out‐of‐plane dimensions can be achieved by implantation through a shadow mask or multienergy implantation. Based on this method, temperature‐controlled VO2 metasurface structure is demonstrated by tuning only locally the MIT behavior on the VO2 surfaces. The metal–insulator transition (MIT) temperature of VO2 thin film is dramatically reduced by noble gas ion implantation. VO2 film with multi‐MIT processes in both in‐plane and out‐of‐plane dimensions is achieved by implantation through a patterned surface or by multienergy implantation, which allows to manipulate the phase transition process of VO2 film at any site in 3D space.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.201701268</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2018-04, Vol.5 (8), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2028972374
source Wiley Online Library Journals Frontfile Complete
subjects Density functional theory
Implantation
lattice engineering
Lattice parameters
Metal-insulator transition
open volume defect
Phase transitions
Rare gases
Shadow masks
Spatial resolution
Transition temperature
vanadium dioxide
Vanadium oxides
title 3D Local Manipulation of the Metal–Insulator Transition Behavior in VO2 Thin Film by Defect‐Induced Lattice Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Local%20Manipulation%20of%20the%20Metal%E2%80%93Insulator%20Transition%20Behavior%20in%20VO2%20Thin%20Film%20by%20Defect%E2%80%90Induced%20Lattice%20Engineering&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Jia,%20Qi&rft.date=2018-04-23&rft.volume=5&rft.issue=8&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201701268&rft_dat=%3Cproquest_wiley%3E2028972374%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2028972374&rft_id=info:pmid/&rfr_iscdi=true