RIGID ORBITS AND SHEETS IN REDUCTIVE LIE ALGEBRAS OVER FIELDS OF PRIME CHARACTERISTIC
Let $G$ be a simple simply connected algebraic group over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$ . We discuss various properties of nilpotent orbits in $\mathfrak{g}$ , which have previously only been considered over $\mathbb{C}$ . Using comput...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2018-06, Vol.17 (3), p.583-613 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 613 |
---|---|
container_issue | 3 |
container_start_page | 583 |
container_title | Journal of the Institute of Mathematics of Jussieu |
container_volume | 17 |
creator | Premet, Alexander Stewart, David I. |
description | Let
$G$
be a simple simply connected algebraic group over an algebraically closed field
$k$
of characteristic
$p>0$
with
$\mathfrak{g}=\text{Lie}(G)$
. We discuss various properties of nilpotent orbits in
$\mathfrak{g}$
, which have previously only been considered over
$\mathbb{C}$
. Using computational methods, we extend to positive characteristic various calculations of de Graaf with nilpotent orbits in exceptional Lie algebras. In particular, we classify those orbits which are reachable as well as those which satisfy a certain related condition due to Panyushev, and determine the codimension of the derived subalgebra
$[\mathfrak{g}_{e},\mathfrak{g}_{e}]$
in the centraliser
$\mathfrak{g}_{e}$
of any nilpotent element
$e\in \mathfrak{g}$
. Some of these calculations are used to show that the list of rigid nilpotent orbits in
$\mathfrak{g}$
, the classification of sheets of
$\mathfrak{g}$
and the distribution of the nilpotent orbits amongst them are independent of good characteristic, remaining the same as in the characteristic zero case. We also give a comprehensive account of the theory of sheets in reductive Lie algebras over algebraically closed fields of good characteristic. |
doi_str_mv | 10.1017/S1474748016000086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2028915455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1474748016000086</cupid><sourcerecordid>2028915455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-24e585b7f5a8641a6129131e12f5774dc0fe51ced6dfa85e558fa2886e7f48873</originalsourceid><addsrcrecordid>eNp1UMFOwkAQ3RhNRPQDvG3iubqz3e0ux9IusEkFsy1cm9LuGogItnDg712ExINx5jAvM--9SR5Cj0CegYB4yYEJ35JARHzJ6Ar1_IoHIQnJ9Q9mwel-i-66bk0IjSiHHpobPdYpnpmhLnIcT1OcT5TyUE-xUek8KfRC4UwrHGdjNTRxjmcLZfBIqyz1eITfjH5VOJnEJk4KZXRe6OQe3bjqo7MPl9lH85EqkkmQzcY6ibOgDkHsA8osl3wpHK9kxKCKgA4gBAvUcSFYUxNnOdS2iRpXSW45l66iUkZWOCalCPvo6ey7a7dfB9vty_X20H76lyUlVA6AM849C86sut12XWtduWtXm6o9lkDKU3rln_S8Jrxoqs2yXTXv9tf6f9U3L6JnzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028915455</pqid></control><display><type>article</type><title>RIGID ORBITS AND SHEETS IN REDUCTIVE LIE ALGEBRAS OVER FIELDS OF PRIME CHARACTERISTIC</title><source>Cambridge Journals Online</source><creator>Premet, Alexander ; Stewart, David I.</creator><creatorcontrib>Premet, Alexander ; Stewart, David I.</creatorcontrib><description>Let
$G$
be a simple simply connected algebraic group over an algebraically closed field
$k$
of characteristic
$p>0$
with
$\mathfrak{g}=\text{Lie}(G)$
. We discuss various properties of nilpotent orbits in
$\mathfrak{g}$
, which have previously only been considered over
$\mathbb{C}$
. Using computational methods, we extend to positive characteristic various calculations of de Graaf with nilpotent orbits in exceptional Lie algebras. In particular, we classify those orbits which are reachable as well as those which satisfy a certain related condition due to Panyushev, and determine the codimension of the derived subalgebra
$[\mathfrak{g}_{e},\mathfrak{g}_{e}]$
in the centraliser
$\mathfrak{g}_{e}$
of any nilpotent element
$e\in \mathfrak{g}$
. Some of these calculations are used to show that the list of rigid nilpotent orbits in
$\mathfrak{g}$
, the classification of sheets of
$\mathfrak{g}$
and the distribution of the nilpotent orbits amongst them are independent of good characteristic, remaining the same as in the characteristic zero case. We also give a comprehensive account of the theory of sheets in reductive Lie algebras over algebraically closed fields of good characteristic.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748016000086</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Lie groups ; Mathematical analysis ; Orbits</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2018-06, Vol.17 (3), p.583-613</ispartof><rights>Cambridge University Press 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-24e585b7f5a8641a6129131e12f5774dc0fe51ced6dfa85e558fa2886e7f48873</citedby><cites>FETCH-LOGICAL-c317t-24e585b7f5a8641a6129131e12f5774dc0fe51ced6dfa85e558fa2886e7f48873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1474748016000086/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Premet, Alexander</creatorcontrib><creatorcontrib>Stewart, David I.</creatorcontrib><title>RIGID ORBITS AND SHEETS IN REDUCTIVE LIE ALGEBRAS OVER FIELDS OF PRIME CHARACTERISTIC</title><title>Journal of the Institute of Mathematics of Jussieu</title><addtitle>J. Inst. Math. Jussieu</addtitle><description>Let
$G$
be a simple simply connected algebraic group over an algebraically closed field
$k$
of characteristic
$p>0$
with
$\mathfrak{g}=\text{Lie}(G)$
. We discuss various properties of nilpotent orbits in
$\mathfrak{g}$
, which have previously only been considered over
$\mathbb{C}$
. Using computational methods, we extend to positive characteristic various calculations of de Graaf with nilpotent orbits in exceptional Lie algebras. In particular, we classify those orbits which are reachable as well as those which satisfy a certain related condition due to Panyushev, and determine the codimension of the derived subalgebra
$[\mathfrak{g}_{e},\mathfrak{g}_{e}]$
in the centraliser
$\mathfrak{g}_{e}$
of any nilpotent element
$e\in \mathfrak{g}$
. Some of these calculations are used to show that the list of rigid nilpotent orbits in
$\mathfrak{g}$
, the classification of sheets of
$\mathfrak{g}$
and the distribution of the nilpotent orbits amongst them are independent of good characteristic, remaining the same as in the characteristic zero case. We also give a comprehensive account of the theory of sheets in reductive Lie algebras over algebraically closed fields of good characteristic.</description><subject>Algebra</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMFOwkAQ3RhNRPQDvG3iubqz3e0ux9IusEkFsy1cm9LuGogItnDg712ExINx5jAvM--9SR5Cj0CegYB4yYEJ35JARHzJ6Ar1_IoHIQnJ9Q9mwel-i-66bk0IjSiHHpobPdYpnpmhLnIcT1OcT5TyUE-xUek8KfRC4UwrHGdjNTRxjmcLZfBIqyz1eITfjH5VOJnEJk4KZXRe6OQe3bjqo7MPl9lH85EqkkmQzcY6ibOgDkHsA8osl3wpHK9kxKCKgA4gBAvUcSFYUxNnOdS2iRpXSW45l66iUkZWOCalCPvo6ey7a7dfB9vty_X20H76lyUlVA6AM849C86sut12XWtduWtXm6o9lkDKU3rln_S8Jrxoqs2yXTXv9tf6f9U3L6JnzA</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Premet, Alexander</creator><creator>Stewart, David I.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201806</creationdate><title>RIGID ORBITS AND SHEETS IN REDUCTIVE LIE ALGEBRAS OVER FIELDS OF PRIME CHARACTERISTIC</title><author>Premet, Alexander ; Stewart, David I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-24e585b7f5a8641a6129131e12f5774dc0fe51ced6dfa85e558fa2886e7f48873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Premet, Alexander</creatorcontrib><creatorcontrib>Stewart, David I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Premet, Alexander</au><au>Stewart, David I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RIGID ORBITS AND SHEETS IN REDUCTIVE LIE ALGEBRAS OVER FIELDS OF PRIME CHARACTERISTIC</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><addtitle>J. Inst. Math. Jussieu</addtitle><date>2018-06</date><risdate>2018</risdate><volume>17</volume><issue>3</issue><spage>583</spage><epage>613</epage><pages>583-613</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>Let
$G$
be a simple simply connected algebraic group over an algebraically closed field
$k$
of characteristic
$p>0$
with
$\mathfrak{g}=\text{Lie}(G)$
. We discuss various properties of nilpotent orbits in
$\mathfrak{g}$
, which have previously only been considered over
$\mathbb{C}$
. Using computational methods, we extend to positive characteristic various calculations of de Graaf with nilpotent orbits in exceptional Lie algebras. In particular, we classify those orbits which are reachable as well as those which satisfy a certain related condition due to Panyushev, and determine the codimension of the derived subalgebra
$[\mathfrak{g}_{e},\mathfrak{g}_{e}]$
in the centraliser
$\mathfrak{g}_{e}$
of any nilpotent element
$e\in \mathfrak{g}$
. Some of these calculations are used to show that the list of rigid nilpotent orbits in
$\mathfrak{g}$
, the classification of sheets of
$\mathfrak{g}$
and the distribution of the nilpotent orbits amongst them are independent of good characteristic, remaining the same as in the characteristic zero case. We also give a comprehensive account of the theory of sheets in reductive Lie algebras over algebraically closed fields of good characteristic.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748016000086</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-7480 |
ispartof | Journal of the Institute of Mathematics of Jussieu, 2018-06, Vol.17 (3), p.583-613 |
issn | 1474-7480 1475-3030 |
language | eng |
recordid | cdi_proquest_journals_2028915455 |
source | Cambridge Journals Online |
subjects | Algebra Lie groups Mathematical analysis Orbits |
title | RIGID ORBITS AND SHEETS IN REDUCTIVE LIE ALGEBRAS OVER FIELDS OF PRIME CHARACTERISTIC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RIGID%20ORBITS%20AND%20SHEETS%20IN%20REDUCTIVE%20LIE%20ALGEBRAS%20OVER%20FIELDS%20OF%20PRIME%20CHARACTERISTIC&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Premet,%20Alexander&rft.date=2018-06&rft.volume=17&rft.issue=3&rft.spage=583&rft.epage=613&rft.pages=583-613&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748016000086&rft_dat=%3Cproquest_cross%3E2028915455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2028915455&rft_id=info:pmid/&rft_cupid=10_1017_S1474748016000086&rfr_iscdi=true |