Special elements of the lattice of monoid varieties
We completely classify all neutral and costandard elements in the lattice MON of all monoid varieties. Further, we prove that an arbitrary upper-modular element of MON except the variety of all monoids is either a completely regular or a commutative variety. Finally, we verify that all commutative v...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2018-06, Vol.79 (2), p.1-12, Article 29 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We completely classify all neutral and costandard elements in the lattice
MON
of all monoid varieties. Further, we prove that an arbitrary upper-modular element of
MON
except the variety of all monoids is either a completely regular or a commutative variety. Finally, we verify that all commutative varieties of monoids are codistributive elements of
MON
. Thus, the problems of describing codistributive or upper-modular elements of
MON
are completely reduced to the completely regular case. |
---|---|
ISSN: | 0002-5240 1420-8911 |
DOI: | 10.1007/s00012-018-0513-0 |