Bianalytic maps between free spectrahedra

Linear matrix inequalities (LMIs) I d + ∑ j = 1 g A j x j + ∑ j = 1 g A j ∗ x j ∗ ⪰ 0 play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2018-06, Vol.371 (1-2), p.883-959
Hauptverfasser: Augat, Meric, Helton, J. William, Klep, Igor, McCullough, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 1-2
container_start_page 883
container_title Mathematische annalen
container_volume 371
creator Augat, Meric
Helton, J. William
Klep, Igor
McCullough, Scott
description Linear matrix inequalities (LMIs) I d + ∑ j = 1 g A j x j + ∑ j = 1 g A j ∗ x j ∗ ⪰ 0 play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are called free spectrahedra. Free spectrahedra are exactly the free semialgebraic convex sets. This paper studies free analytic maps between free spectrahedra and, under certain (generically valid) irreducibility assumptions, classifies all those that are bianalytic. The foundation of such maps turns out to be a very small class of birational maps we call convexotonic. The convexotonic maps in g variables sit in correspondence with g -dimensional algebras. If two bounded free spectrahedra D A and D B meeting our irreducibility assumptions are free bianalytic with map denoted p , then p must (after possibly an affine linear transform) extend to a convexotonic map corresponding to a g -dimensional algebra spanned by ( U - I ) A 1 , … , ( U - I ) A g for some unitary U . Furthermore, B and UA are unitarily equivalent. The article also establishes a Positivstellensatz for free analytic functions whose real part is positive semidefinite on a free spectrahedron and proves a representation for a free analytic map from D A to D B (not necessarily bianalytic). Another result shows that a function analytic on any radial expansion of a free spectrahedron is approximable by polynomials uniformly on the spectrahedron. These theorems are needed for classifying free bianalytic maps.
doi_str_mv 10.1007/s00208-017-1630-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2027692636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027692636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3972d8ff3476e45eeeb4fb2dfd1acc403fc35677c0877ff3e6550c4755fc7ba13</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqHwA9giMTEYnv1iOx2h4kuqxAKz5TjPkKpNg50K9d_jKkhMTG-45149HcYuBdwIAHObACTUHIThQiNwPGKFqFByUYM5ZkWOFVc1ilN2ltIKABBAFez6vnO9W-_HzpcbN6SyofGbqC9DJCrTQH6M7pPa6M7ZSXDrRBe_d8beHx_eFs98-fr0srhbco9CjxznRrZ1CFgZTZUioqYKjWxDK5z3FWDwqLQxHmpjMkZaKfCVUSp40ziBM3Y17Q5x-7WjNNrVdhfzj8lKkEbPpUadKTFRPm5TihTsELuNi3srwB6M2MmIzUbswYjF3JFTJ2W2_6D4t_x_6QfnYGJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027692636</pqid></control><display><type>article</type><title>Bianalytic maps between free spectrahedra</title><source>SpringerLink Journals - AutoHoldings</source><creator>Augat, Meric ; Helton, J. William ; Klep, Igor ; McCullough, Scott</creator><creatorcontrib>Augat, Meric ; Helton, J. William ; Klep, Igor ; McCullough, Scott</creatorcontrib><description>Linear matrix inequalities (LMIs) I d + ∑ j = 1 g A j x j + ∑ j = 1 g A j ∗ x j ∗ ⪰ 0 play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are called free spectrahedra. Free spectrahedra are exactly the free semialgebraic convex sets. This paper studies free analytic maps between free spectrahedra and, under certain (generically valid) irreducibility assumptions, classifies all those that are bianalytic. The foundation of such maps turns out to be a very small class of birational maps we call convexotonic. The convexotonic maps in g variables sit in correspondence with g -dimensional algebras. If two bounded free spectrahedra D A and D B meeting our irreducibility assumptions are free bianalytic with map denoted p , then p must (after possibly an affine linear transform) extend to a convexotonic map corresponding to a g -dimensional algebra spanned by ( U - I ) A 1 , … , ( U - I ) A g for some unitary U . Furthermore, B and UA are unitarily equivalent. The article also establishes a Positivstellensatz for free analytic functions whose real part is positive semidefinite on a free spectrahedron and proves a representation for a free analytic map from D A to D B (not necessarily bianalytic). Another result shows that a function analytic on any radial expansion of a free spectrahedron is approximable by polynomials uniformly on the spectrahedron. These theorems are needed for classifying free bianalytic maps.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-017-1630-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytic functions ; Convexity ; Linear matrix inequalities ; Linear systems ; Linear transformations ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Spectra ; Systems engineering</subject><ispartof>Mathematische annalen, 2018-06, Vol.371 (1-2), p.883-959</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3972d8ff3476e45eeeb4fb2dfd1acc403fc35677c0877ff3e6550c4755fc7ba13</citedby><cites>FETCH-LOGICAL-c316t-3972d8ff3476e45eeeb4fb2dfd1acc403fc35677c0877ff3e6550c4755fc7ba13</cites><orcidid>0000-0001-6530-7845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-017-1630-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-017-1630-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Augat, Meric</creatorcontrib><creatorcontrib>Helton, J. William</creatorcontrib><creatorcontrib>Klep, Igor</creatorcontrib><creatorcontrib>McCullough, Scott</creatorcontrib><title>Bianalytic maps between free spectrahedra</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>Linear matrix inequalities (LMIs) I d + ∑ j = 1 g A j x j + ∑ j = 1 g A j ∗ x j ∗ ⪰ 0 play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are called free spectrahedra. Free spectrahedra are exactly the free semialgebraic convex sets. This paper studies free analytic maps between free spectrahedra and, under certain (generically valid) irreducibility assumptions, classifies all those that are bianalytic. The foundation of such maps turns out to be a very small class of birational maps we call convexotonic. The convexotonic maps in g variables sit in correspondence with g -dimensional algebras. If two bounded free spectrahedra D A and D B meeting our irreducibility assumptions are free bianalytic with map denoted p , then p must (after possibly an affine linear transform) extend to a convexotonic map corresponding to a g -dimensional algebra spanned by ( U - I ) A 1 , … , ( U - I ) A g for some unitary U . Furthermore, B and UA are unitarily equivalent. The article also establishes a Positivstellensatz for free analytic functions whose real part is positive semidefinite on a free spectrahedron and proves a representation for a free analytic map from D A to D B (not necessarily bianalytic). Another result shows that a function analytic on any radial expansion of a free spectrahedron is approximable by polynomials uniformly on the spectrahedron. These theorems are needed for classifying free bianalytic maps.</description><subject>Analytic functions</subject><subject>Convexity</subject><subject>Linear matrix inequalities</subject><subject>Linear systems</subject><subject>Linear transformations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Spectra</subject><subject>Systems engineering</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqHwA9giMTEYnv1iOx2h4kuqxAKz5TjPkKpNg50K9d_jKkhMTG-45149HcYuBdwIAHObACTUHIThQiNwPGKFqFByUYM5ZkWOFVc1ilN2ltIKABBAFez6vnO9W-_HzpcbN6SyofGbqC9DJCrTQH6M7pPa6M7ZSXDrRBe_d8beHx_eFs98-fr0srhbco9CjxznRrZ1CFgZTZUioqYKjWxDK5z3FWDwqLQxHmpjMkZaKfCVUSp40ziBM3Y17Q5x-7WjNNrVdhfzj8lKkEbPpUadKTFRPm5TihTsELuNi3srwB6M2MmIzUbswYjF3JFTJ2W2_6D4t_x_6QfnYGJI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Augat, Meric</creator><creator>Helton, J. William</creator><creator>Klep, Igor</creator><creator>McCullough, Scott</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6530-7845</orcidid></search><sort><creationdate>20180601</creationdate><title>Bianalytic maps between free spectrahedra</title><author>Augat, Meric ; Helton, J. William ; Klep, Igor ; McCullough, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3972d8ff3476e45eeeb4fb2dfd1acc403fc35677c0877ff3e6550c4755fc7ba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytic functions</topic><topic>Convexity</topic><topic>Linear matrix inequalities</topic><topic>Linear systems</topic><topic>Linear transformations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Spectra</topic><topic>Systems engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Augat, Meric</creatorcontrib><creatorcontrib>Helton, J. William</creatorcontrib><creatorcontrib>Klep, Igor</creatorcontrib><creatorcontrib>McCullough, Scott</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Augat, Meric</au><au>Helton, J. William</au><au>Klep, Igor</au><au>McCullough, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bianalytic maps between free spectrahedra</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>371</volume><issue>1-2</issue><spage>883</spage><epage>959</epage><pages>883-959</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>Linear matrix inequalities (LMIs) I d + ∑ j = 1 g A j x j + ∑ j = 1 g A j ∗ x j ∗ ⪰ 0 play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are called free spectrahedra. Free spectrahedra are exactly the free semialgebraic convex sets. This paper studies free analytic maps between free spectrahedra and, under certain (generically valid) irreducibility assumptions, classifies all those that are bianalytic. The foundation of such maps turns out to be a very small class of birational maps we call convexotonic. The convexotonic maps in g variables sit in correspondence with g -dimensional algebras. If two bounded free spectrahedra D A and D B meeting our irreducibility assumptions are free bianalytic with map denoted p , then p must (after possibly an affine linear transform) extend to a convexotonic map corresponding to a g -dimensional algebra spanned by ( U - I ) A 1 , … , ( U - I ) A g for some unitary U . Furthermore, B and UA are unitarily equivalent. The article also establishes a Positivstellensatz for free analytic functions whose real part is positive semidefinite on a free spectrahedron and proves a representation for a free analytic map from D A to D B (not necessarily bianalytic). Another result shows that a function analytic on any radial expansion of a free spectrahedron is approximable by polynomials uniformly on the spectrahedron. These theorems are needed for classifying free bianalytic maps.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-017-1630-3</doi><tpages>77</tpages><orcidid>https://orcid.org/0000-0001-6530-7845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2018-06, Vol.371 (1-2), p.883-959
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2027692636
source SpringerLink Journals - AutoHoldings
subjects Analytic functions
Convexity
Linear matrix inequalities
Linear systems
Linear transformations
Mathematics
Mathematics and Statistics
Matrix methods
Spectra
Systems engineering
title Bianalytic maps between free spectrahedra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bianalytic%20maps%20between%20free%20spectrahedra&rft.jtitle=Mathematische%20annalen&rft.au=Augat,%20Meric&rft.date=2018-06-01&rft.volume=371&rft.issue=1-2&rft.spage=883&rft.epage=959&rft.pages=883-959&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-017-1630-3&rft_dat=%3Cproquest_cross%3E2027692636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027692636&rft_id=info:pmid/&rfr_iscdi=true