Bianalytic maps between free spectrahedra
Linear matrix inequalities (LMIs) I d + ∑ j = 1 g A j x j + ∑ j = 1 g A j ∗ x j ∗ ⪰ 0 play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2018-06, Vol.371 (1-2), p.883-959 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | 1-2 |
container_start_page | 883 |
container_title | Mathematische annalen |
container_volume | 371 |
creator | Augat, Meric Helton, J. William Klep, Igor McCullough, Scott |
description | Linear matrix inequalities (LMIs)
I
d
+
∑
j
=
1
g
A
j
x
j
+
∑
j
=
1
g
A
j
∗
x
j
∗
⪰
0
play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are called free spectrahedra. Free spectrahedra are exactly the free semialgebraic convex sets. This paper studies free analytic maps between free spectrahedra and, under certain (generically valid) irreducibility assumptions, classifies all those that are bianalytic. The foundation of such maps turns out to be a very small class of birational maps we call convexotonic. The convexotonic maps in
g
variables sit in correspondence with
g
-dimensional algebras. If two bounded free spectrahedra
D
A
and
D
B
meeting our irreducibility assumptions are free bianalytic with map denoted
p
, then
p
must (after possibly an affine linear transform) extend to a convexotonic map corresponding to a
g
-dimensional algebra spanned by
(
U
-
I
)
A
1
,
…
,
(
U
-
I
)
A
g
for some unitary
U
. Furthermore,
B
and
UA
are unitarily equivalent. The article also establishes a Positivstellensatz for free analytic functions whose real part is positive semidefinite on a free spectrahedron and proves a representation for a free analytic map from
D
A
to
D
B
(not necessarily bianalytic). Another result shows that a function analytic on any radial expansion of a free spectrahedron is approximable by polynomials uniformly on the spectrahedron. These theorems are needed for classifying free bianalytic maps. |
doi_str_mv | 10.1007/s00208-017-1630-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2027692636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027692636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3972d8ff3476e45eeeb4fb2dfd1acc403fc35677c0877ff3e6550c4755fc7ba13</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqHwA9giMTEYnv1iOx2h4kuqxAKz5TjPkKpNg50K9d_jKkhMTG-45149HcYuBdwIAHObACTUHIThQiNwPGKFqFByUYM5ZkWOFVc1ilN2ltIKABBAFez6vnO9W-_HzpcbN6SyofGbqC9DJCrTQH6M7pPa6M7ZSXDrRBe_d8beHx_eFs98-fr0srhbco9CjxznRrZ1CFgZTZUioqYKjWxDK5z3FWDwqLQxHmpjMkZaKfCVUSp40ziBM3Y17Q5x-7WjNNrVdhfzj8lKkEbPpUadKTFRPm5TihTsELuNi3srwB6M2MmIzUbswYjF3JFTJ2W2_6D4t_x_6QfnYGJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027692636</pqid></control><display><type>article</type><title>Bianalytic maps between free spectrahedra</title><source>SpringerLink Journals - AutoHoldings</source><creator>Augat, Meric ; Helton, J. William ; Klep, Igor ; McCullough, Scott</creator><creatorcontrib>Augat, Meric ; Helton, J. William ; Klep, Igor ; McCullough, Scott</creatorcontrib><description>Linear matrix inequalities (LMIs)
I
d
+
∑
j
=
1
g
A
j
x
j
+
∑
j
=
1
g
A
j
∗
x
j
∗
⪰
0
play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are called free spectrahedra. Free spectrahedra are exactly the free semialgebraic convex sets. This paper studies free analytic maps between free spectrahedra and, under certain (generically valid) irreducibility assumptions, classifies all those that are bianalytic. The foundation of such maps turns out to be a very small class of birational maps we call convexotonic. The convexotonic maps in
g
variables sit in correspondence with
g
-dimensional algebras. If two bounded free spectrahedra
D
A
and
D
B
meeting our irreducibility assumptions are free bianalytic with map denoted
p
, then
p
must (after possibly an affine linear transform) extend to a convexotonic map corresponding to a
g
-dimensional algebra spanned by
(
U
-
I
)
A
1
,
…
,
(
U
-
I
)
A
g
for some unitary
U
. Furthermore,
B
and
UA
are unitarily equivalent. The article also establishes a Positivstellensatz for free analytic functions whose real part is positive semidefinite on a free spectrahedron and proves a representation for a free analytic map from
D
A
to
D
B
(not necessarily bianalytic). Another result shows that a function analytic on any radial expansion of a free spectrahedron is approximable by polynomials uniformly on the spectrahedron. These theorems are needed for classifying free bianalytic maps.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-017-1630-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytic functions ; Convexity ; Linear matrix inequalities ; Linear systems ; Linear transformations ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Spectra ; Systems engineering</subject><ispartof>Mathematische annalen, 2018-06, Vol.371 (1-2), p.883-959</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3972d8ff3476e45eeeb4fb2dfd1acc403fc35677c0877ff3e6550c4755fc7ba13</citedby><cites>FETCH-LOGICAL-c316t-3972d8ff3476e45eeeb4fb2dfd1acc403fc35677c0877ff3e6550c4755fc7ba13</cites><orcidid>0000-0001-6530-7845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-017-1630-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-017-1630-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Augat, Meric</creatorcontrib><creatorcontrib>Helton, J. William</creatorcontrib><creatorcontrib>Klep, Igor</creatorcontrib><creatorcontrib>McCullough, Scott</creatorcontrib><title>Bianalytic maps between free spectrahedra</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>Linear matrix inequalities (LMIs)
I
d
+
∑
j
=
1
g
A
j
x
j
+
∑
j
=
1
g
A
j
∗
x
j
∗
⪰
0
play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are called free spectrahedra. Free spectrahedra are exactly the free semialgebraic convex sets. This paper studies free analytic maps between free spectrahedra and, under certain (generically valid) irreducibility assumptions, classifies all those that are bianalytic. The foundation of such maps turns out to be a very small class of birational maps we call convexotonic. The convexotonic maps in
g
variables sit in correspondence with
g
-dimensional algebras. If two bounded free spectrahedra
D
A
and
D
B
meeting our irreducibility assumptions are free bianalytic with map denoted
p
, then
p
must (after possibly an affine linear transform) extend to a convexotonic map corresponding to a
g
-dimensional algebra spanned by
(
U
-
I
)
A
1
,
…
,
(
U
-
I
)
A
g
for some unitary
U
. Furthermore,
B
and
UA
are unitarily equivalent. The article also establishes a Positivstellensatz for free analytic functions whose real part is positive semidefinite on a free spectrahedron and proves a representation for a free analytic map from
D
A
to
D
B
(not necessarily bianalytic). Another result shows that a function analytic on any radial expansion of a free spectrahedron is approximable by polynomials uniformly on the spectrahedron. These theorems are needed for classifying free bianalytic maps.</description><subject>Analytic functions</subject><subject>Convexity</subject><subject>Linear matrix inequalities</subject><subject>Linear systems</subject><subject>Linear transformations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Spectra</subject><subject>Systems engineering</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqHwA9giMTEYnv1iOx2h4kuqxAKz5TjPkKpNg50K9d_jKkhMTG-45149HcYuBdwIAHObACTUHIThQiNwPGKFqFByUYM5ZkWOFVc1ilN2ltIKABBAFez6vnO9W-_HzpcbN6SyofGbqC9DJCrTQH6M7pPa6M7ZSXDrRBe_d8beHx_eFs98-fr0srhbco9CjxznRrZ1CFgZTZUioqYKjWxDK5z3FWDwqLQxHmpjMkZaKfCVUSp40ziBM3Y17Q5x-7WjNNrVdhfzj8lKkEbPpUadKTFRPm5TihTsELuNi3srwB6M2MmIzUbswYjF3JFTJ2W2_6D4t_x_6QfnYGJI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Augat, Meric</creator><creator>Helton, J. William</creator><creator>Klep, Igor</creator><creator>McCullough, Scott</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6530-7845</orcidid></search><sort><creationdate>20180601</creationdate><title>Bianalytic maps between free spectrahedra</title><author>Augat, Meric ; Helton, J. William ; Klep, Igor ; McCullough, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3972d8ff3476e45eeeb4fb2dfd1acc403fc35677c0877ff3e6550c4755fc7ba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytic functions</topic><topic>Convexity</topic><topic>Linear matrix inequalities</topic><topic>Linear systems</topic><topic>Linear transformations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Spectra</topic><topic>Systems engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Augat, Meric</creatorcontrib><creatorcontrib>Helton, J. William</creatorcontrib><creatorcontrib>Klep, Igor</creatorcontrib><creatorcontrib>McCullough, Scott</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Augat, Meric</au><au>Helton, J. William</au><au>Klep, Igor</au><au>McCullough, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bianalytic maps between free spectrahedra</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>371</volume><issue>1-2</issue><spage>883</spage><epage>959</epage><pages>883-959</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>Linear matrix inequalities (LMIs)
I
d
+
∑
j
=
1
g
A
j
x
j
+
∑
j
=
1
g
A
j
∗
x
j
∗
⪰
0
play a role in many areas of applications. The set of solutions of an LMI is a spectrahedron. LMIs in (dimension-free) matrix variables model most problems in linear systems engineering, and their solution sets are called free spectrahedra. Free spectrahedra are exactly the free semialgebraic convex sets. This paper studies free analytic maps between free spectrahedra and, under certain (generically valid) irreducibility assumptions, classifies all those that are bianalytic. The foundation of such maps turns out to be a very small class of birational maps we call convexotonic. The convexotonic maps in
g
variables sit in correspondence with
g
-dimensional algebras. If two bounded free spectrahedra
D
A
and
D
B
meeting our irreducibility assumptions are free bianalytic with map denoted
p
, then
p
must (after possibly an affine linear transform) extend to a convexotonic map corresponding to a
g
-dimensional algebra spanned by
(
U
-
I
)
A
1
,
…
,
(
U
-
I
)
A
g
for some unitary
U
. Furthermore,
B
and
UA
are unitarily equivalent. The article also establishes a Positivstellensatz for free analytic functions whose real part is positive semidefinite on a free spectrahedron and proves a representation for a free analytic map from
D
A
to
D
B
(not necessarily bianalytic). Another result shows that a function analytic on any radial expansion of a free spectrahedron is approximable by polynomials uniformly on the spectrahedron. These theorems are needed for classifying free bianalytic maps.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-017-1630-3</doi><tpages>77</tpages><orcidid>https://orcid.org/0000-0001-6530-7845</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2018-06, Vol.371 (1-2), p.883-959 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2027692636 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytic functions Convexity Linear matrix inequalities Linear systems Linear transformations Mathematics Mathematics and Statistics Matrix methods Spectra Systems engineering |
title | Bianalytic maps between free spectrahedra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bianalytic%20maps%20between%20free%20spectrahedra&rft.jtitle=Mathematische%20annalen&rft.au=Augat,%20Meric&rft.date=2018-06-01&rft.volume=371&rft.issue=1-2&rft.spage=883&rft.epage=959&rft.pages=883-959&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-017-1630-3&rft_dat=%3Cproquest_cross%3E2027692636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027692636&rft_id=info:pmid/&rfr_iscdi=true |