Non-Monomial Permutations with Differential Uniformity Six
In this paper, a family of non-monomial permutations over the finite field F 2 n with differential uniformity at most 6 is proposed, where n is a positive integer. The algebraic degree of these functions is also determined.
Gespeichert in:
Veröffentlicht in: | Journal of systems science and complexity 2018-08, Vol.31 (4), p.1078-1089 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1089 |
---|---|
container_issue | 4 |
container_start_page | 1078 |
container_title | Journal of systems science and complexity |
container_volume | 31 |
creator | Tu, Ziran Zeng, Xiangyong |
description | In this paper, a family of non-monomial permutations over the finite field
F
2
n
with differential uniformity at most 6 is proposed, where
n
is a positive integer. The algebraic degree of these functions is also determined. |
doi_str_mv | 10.1007/s11424-017-6294-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2027675769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027675769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-15d7f81b65e5d2a44f24d7fe4e0bb2348b97e5e781b913ebf0ed68f18f445aa93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52iSzcfGm9RPqB-gPYdsm2hKN6lJFu2_N8sKnjzNMPO8M_AAcIrROUZIXCSMKaEQYQE5kRSSPTDBjEkoEBf7pUdIQo4JPQRHKa0RqrlEzQRcPgUPH4MPndOb6sXErs86u-BT9eXyR3XtrDXR-DysF97ZEDuXd9Wr-z4GB1Zvkjn5rVOwuL15m93D-fPdw-xqDpc15hlithK2wS1nhq2IptQSWiaGGtS2pKZNK4VhRhRE4tq0FpkVbyxuLKVMa1lPwdl4dxvDZ29SVuvQR19eKoKI4IIJPlB4pJYxpBSNVdvoOh13CiM1KFKjIlUUqUGRIiVDxkwqrH838e_y_6EfXspo8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027675769</pqid></control><display><type>article</type><title>Non-Monomial Permutations with Differential Uniformity Six</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tu, Ziran ; Zeng, Xiangyong</creator><creatorcontrib>Tu, Ziran ; Zeng, Xiangyong</creatorcontrib><description>In this paper, a family of non-monomial permutations over the finite field
F
2
n
with differential uniformity at most 6 is proposed, where
n
is a positive integer. The algebraic degree of these functions is also determined.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-017-6294-2</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Complex Systems ; Control ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Permutations ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2018-08, Vol.31 (4), p.1078-1089</ispartof><rights>Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-15d7f81b65e5d2a44f24d7fe4e0bb2348b97e5e781b913ebf0ed68f18f445aa93</citedby><cites>FETCH-LOGICAL-c316t-15d7f81b65e5d2a44f24d7fe4e0bb2348b97e5e781b913ebf0ed68f18f445aa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-017-6294-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-017-6294-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tu, Ziran</creatorcontrib><creatorcontrib>Zeng, Xiangyong</creatorcontrib><title>Non-Monomial Permutations with Differential Uniformity Six</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>In this paper, a family of non-monomial permutations over the finite field
F
2
n
with differential uniformity at most 6 is proposed, where
n
is a positive integer. The algebraic degree of these functions is also determined.</description><subject>Complex Systems</subject><subject>Control</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Permutations</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52iSzcfGm9RPqB-gPYdsm2hKN6lJFu2_N8sKnjzNMPO8M_AAcIrROUZIXCSMKaEQYQE5kRSSPTDBjEkoEBf7pUdIQo4JPQRHKa0RqrlEzQRcPgUPH4MPndOb6sXErs86u-BT9eXyR3XtrDXR-DysF97ZEDuXd9Wr-z4GB1Zvkjn5rVOwuL15m93D-fPdw-xqDpc15hlithK2wS1nhq2IptQSWiaGGtS2pKZNK4VhRhRE4tq0FpkVbyxuLKVMa1lPwdl4dxvDZ29SVuvQR19eKoKI4IIJPlB4pJYxpBSNVdvoOh13CiM1KFKjIlUUqUGRIiVDxkwqrH838e_y_6EfXspo8Q</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Tu, Ziran</creator><creator>Zeng, Xiangyong</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Non-Monomial Permutations with Differential Uniformity Six</title><author>Tu, Ziran ; Zeng, Xiangyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-15d7f81b65e5d2a44f24d7fe4e0bb2348b97e5e781b913ebf0ed68f18f445aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Permutations</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Ziran</creatorcontrib><creatorcontrib>Zeng, Xiangyong</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Ziran</au><au>Zeng, Xiangyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Monomial Permutations with Differential Uniformity Six</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>31</volume><issue>4</issue><spage>1078</spage><epage>1089</epage><pages>1078-1089</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>In this paper, a family of non-monomial permutations over the finite field
F
2
n
with differential uniformity at most 6 is proposed, where
n
is a positive integer. The algebraic degree of these functions is also determined.</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-017-6294-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2018-08, Vol.31 (4), p.1078-1089 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_2027675769 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Complex Systems Control Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Permutations Statistics Systems Theory |
title | Non-Monomial Permutations with Differential Uniformity Six |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Monomial%20Permutations%20with%20Differential%20Uniformity%20Six&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Tu,%20Ziran&rft.date=2018-08-01&rft.volume=31&rft.issue=4&rft.spage=1078&rft.epage=1089&rft.pages=1078-1089&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-017-6294-2&rft_dat=%3Cproquest_cross%3E2027675769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027675769&rft_id=info:pmid/&rfr_iscdi=true |