A new study of using temporality and weights to improve similarity measures for link prediction of social networks
Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activi...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2018-01, Vol.34 (4), p.2667-2678 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2678 |
---|---|
container_issue | 4 |
container_start_page | 2667 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 34 |
creator | Aghabozorgi, Farshad Reza Khayyambashi, Mohammad |
description | Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activities, some weights of edges and some fusion of both in their calculation. A new definition of recency is provided here. A supervised learning method that applies a range of network properties and nodes similarity measures as its features set is developed here for experiments. The results of the experiments indicate that using proposed similarity measures would improve the performance of the link prediction. |
doi_str_mv | 10.3233/JIFS-17770 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2027633646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027633646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-b545d46e5478d2aa9ca245b21d215f53c625fdecf364fb573a68e1e1b62239b03</originalsourceid><addsrcrecordid>eNotkE1OwzAQRi0EEqWw4QSW2CEF_BPbybKqKBRVYgGsIyexi9skDh6HqrfhLJyMlLKaWbz5vtFD6JqSO844v39eLl4TqpQiJ2hCMyWSLJfqdNyJTBPKUnmOLgA2hFAlGJkgmOHO7DDEod5jb_EArlvjaNreB924uMe6q3--d8atPyLg6LFr--C_DAbXukaHA9IaDUMwgK0PuHHdFvfB1K6KzneHUPCV081YFHc-bOESnVndgLn6n1P0vnh4mz8lq5fH5Xy2Siom8piUIhV1Ko1IVVYzrfNKs1SUjNaMCit4JZmwtaksl6ktheJaZoYaWkrGeF4SPkU3x9zx4c_BQCw2fgjdWFkwwpTk46EcqdsjVQUPEIwt-uBaHfYFJcVBanGQWvxJ5b-OTmx9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027633646</pqid></control><display><type>article</type><title>A new study of using temporality and weights to improve similarity measures for link prediction of social networks</title><source>Business Source Complete</source><creator>Aghabozorgi, Farshad ; Reza Khayyambashi, Mohammad</creator><creatorcontrib>Aghabozorgi, Farshad ; Reza Khayyambashi, Mohammad</creatorcontrib><description>Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activities, some weights of edges and some fusion of both in their calculation. A new definition of recency is provided here. A supervised learning method that applies a range of network properties and nodes similarity measures as its features set is developed here for experiments. The results of the experiments indicate that using proposed similarity measures would improve the performance of the link prediction.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-17770</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Performance enhancement ; Similarity ; Similarity measures</subject><ispartof>Journal of intelligent & fuzzy systems, 2018-01, Vol.34 (4), p.2667-2678</ispartof><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-b545d46e5478d2aa9ca245b21d215f53c625fdecf364fb573a68e1e1b62239b03</citedby><cites>FETCH-LOGICAL-c259t-b545d46e5478d2aa9ca245b21d215f53c625fdecf364fb573a68e1e1b62239b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aghabozorgi, Farshad</creatorcontrib><creatorcontrib>Reza Khayyambashi, Mohammad</creatorcontrib><title>A new study of using temporality and weights to improve similarity measures for link prediction of social networks</title><title>Journal of intelligent & fuzzy systems</title><description>Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activities, some weights of edges and some fusion of both in their calculation. A new definition of recency is provided here. A supervised learning method that applies a range of network properties and nodes similarity measures as its features set is developed here for experiments. The results of the experiments indicate that using proposed similarity measures would improve the performance of the link prediction.</description><subject>Performance enhancement</subject><subject>Similarity</subject><subject>Similarity measures</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQRi0EEqWw4QSW2CEF_BPbybKqKBRVYgGsIyexi9skDh6HqrfhLJyMlLKaWbz5vtFD6JqSO844v39eLl4TqpQiJ2hCMyWSLJfqdNyJTBPKUnmOLgA2hFAlGJkgmOHO7DDEod5jb_EArlvjaNreB924uMe6q3--d8atPyLg6LFr--C_DAbXukaHA9IaDUMwgK0PuHHdFvfB1K6KzneHUPCV081YFHc-bOESnVndgLn6n1P0vnh4mz8lq5fH5Xy2Siom8piUIhV1Ko1IVVYzrfNKs1SUjNaMCit4JZmwtaksl6ktheJaZoYaWkrGeF4SPkU3x9zx4c_BQCw2fgjdWFkwwpTk46EcqdsjVQUPEIwt-uBaHfYFJcVBanGQWvxJ5b-OTmx9</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Aghabozorgi, Farshad</creator><creator>Reza Khayyambashi, Mohammad</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>A new study of using temporality and weights to improve similarity measures for link prediction of social networks</title><author>Aghabozorgi, Farshad ; Reza Khayyambashi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-b545d46e5478d2aa9ca245b21d215f53c625fdecf364fb573a68e1e1b62239b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Performance enhancement</topic><topic>Similarity</topic><topic>Similarity measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aghabozorgi, Farshad</creatorcontrib><creatorcontrib>Reza Khayyambashi, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghabozorgi, Farshad</au><au>Reza Khayyambashi, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new study of using temporality and weights to improve similarity measures for link prediction of social networks</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>2667</spage><epage>2678</epage><pages>2667-2678</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activities, some weights of edges and some fusion of both in their calculation. A new definition of recency is provided here. A supervised learning method that applies a range of network properties and nodes similarity measures as its features set is developed here for experiments. The results of the experiments indicate that using proposed similarity measures would improve the performance of the link prediction.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-17770</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2018-01, Vol.34 (4), p.2667-2678 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2027633646 |
source | Business Source Complete |
subjects | Performance enhancement Similarity Similarity measures |
title | A new study of using temporality and weights to improve similarity measures for link prediction of social networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20study%20of%20using%20temporality%20and%C2%A0weights%20to%20improve%20similarity%20measures%20for%20link%20prediction%20of%20social%20networks&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Aghabozorgi,%20Farshad&rft.date=2018-01-01&rft.volume=34&rft.issue=4&rft.spage=2667&rft.epage=2678&rft.pages=2667-2678&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-17770&rft_dat=%3Cproquest_cross%3E2027633646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027633646&rft_id=info:pmid/&rfr_iscdi=true |