A new study of using temporality and weights to improve similarity measures for link prediction of social networks

Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2018-01, Vol.34 (4), p.2667-2678
Hauptverfasser: Aghabozorgi, Farshad, Reza Khayyambashi, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2678
container_issue 4
container_start_page 2667
container_title Journal of intelligent & fuzzy systems
container_volume 34
creator Aghabozorgi, Farshad
Reza Khayyambashi, Mohammad
description Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activities, some weights of edges and some fusion of both in their calculation. A new definition of recency is provided here. A supervised learning method that applies a range of network properties and nodes similarity measures as its features set is developed here for experiments. The results of the experiments indicate that using proposed similarity measures would improve the performance of the link prediction.
doi_str_mv 10.3233/JIFS-17770
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2027633646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027633646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-b545d46e5478d2aa9ca245b21d215f53c625fdecf364fb573a68e1e1b62239b03</originalsourceid><addsrcrecordid>eNotkE1OwzAQRi0EEqWw4QSW2CEF_BPbybKqKBRVYgGsIyexi9skDh6HqrfhLJyMlLKaWbz5vtFD6JqSO844v39eLl4TqpQiJ2hCMyWSLJfqdNyJTBPKUnmOLgA2hFAlGJkgmOHO7DDEod5jb_EArlvjaNreB924uMe6q3--d8atPyLg6LFr--C_DAbXukaHA9IaDUMwgK0PuHHdFvfB1K6KzneHUPCV081YFHc-bOESnVndgLn6n1P0vnh4mz8lq5fH5Xy2Siom8piUIhV1Ko1IVVYzrfNKs1SUjNaMCit4JZmwtaksl6ktheJaZoYaWkrGeF4SPkU3x9zx4c_BQCw2fgjdWFkwwpTk46EcqdsjVQUPEIwt-uBaHfYFJcVBanGQWvxJ5b-OTmx9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027633646</pqid></control><display><type>article</type><title>A new study of using temporality and weights to improve similarity measures for link prediction of social networks</title><source>Business Source Complete</source><creator>Aghabozorgi, Farshad ; Reza Khayyambashi, Mohammad</creator><creatorcontrib>Aghabozorgi, Farshad ; Reza Khayyambashi, Mohammad</creatorcontrib><description>Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activities, some weights of edges and some fusion of both in their calculation. A new definition of recency is provided here. A supervised learning method that applies a range of network properties and nodes similarity measures as its features set is developed here for experiments. The results of the experiments indicate that using proposed similarity measures would improve the performance of the link prediction.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-17770</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Performance enhancement ; Similarity ; Similarity measures</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2018-01, Vol.34 (4), p.2667-2678</ispartof><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-b545d46e5478d2aa9ca245b21d215f53c625fdecf364fb573a68e1e1b62239b03</citedby><cites>FETCH-LOGICAL-c259t-b545d46e5478d2aa9ca245b21d215f53c625fdecf364fb573a68e1e1b62239b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aghabozorgi, Farshad</creatorcontrib><creatorcontrib>Reza Khayyambashi, Mohammad</creatorcontrib><title>A new study of using temporality and weights to improve similarity measures for link prediction of social networks</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activities, some weights of edges and some fusion of both in their calculation. A new definition of recency is provided here. A supervised learning method that applies a range of network properties and nodes similarity measures as its features set is developed here for experiments. The results of the experiments indicate that using proposed similarity measures would improve the performance of the link prediction.</description><subject>Performance enhancement</subject><subject>Similarity</subject><subject>Similarity measures</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQRi0EEqWw4QSW2CEF_BPbybKqKBRVYgGsIyexi9skDh6HqrfhLJyMlLKaWbz5vtFD6JqSO844v39eLl4TqpQiJ2hCMyWSLJfqdNyJTBPKUnmOLgA2hFAlGJkgmOHO7DDEod5jb_EArlvjaNreB924uMe6q3--d8atPyLg6LFr--C_DAbXukaHA9IaDUMwgK0PuHHdFvfB1K6KzneHUPCV081YFHc-bOESnVndgLn6n1P0vnh4mz8lq5fH5Xy2Siom8piUIhV1Ko1IVVYzrfNKs1SUjNaMCit4JZmwtaksl6ktheJaZoYaWkrGeF4SPkU3x9zx4c_BQCw2fgjdWFkwwpTk46EcqdsjVQUPEIwt-uBaHfYFJcVBanGQWvxJ5b-OTmx9</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Aghabozorgi, Farshad</creator><creator>Reza Khayyambashi, Mohammad</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>A new study of using temporality and weights to improve similarity measures for link prediction of social networks</title><author>Aghabozorgi, Farshad ; Reza Khayyambashi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-b545d46e5478d2aa9ca245b21d215f53c625fdecf364fb573a68e1e1b62239b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Performance enhancement</topic><topic>Similarity</topic><topic>Similarity measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aghabozorgi, Farshad</creatorcontrib><creatorcontrib>Reza Khayyambashi, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghabozorgi, Farshad</au><au>Reza Khayyambashi, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new study of using temporality and weights to improve similarity measures for link prediction of social networks</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>2667</spage><epage>2678</epage><pages>2667-2678</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Link prediction is the problem of inferring future interactions among existing network members based on available knowledge. Computing similarity between a node pair is a known solution for link prediction. This article proposes some new similarity measures. Some of them use nodes’ recency of activities, some weights of edges and some fusion of both in their calculation. A new definition of recency is provided here. A supervised learning method that applies a range of network properties and nodes similarity measures as its features set is developed here for experiments. The results of the experiments indicate that using proposed similarity measures would improve the performance of the link prediction.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-17770</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2018-01, Vol.34 (4), p.2667-2678
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2027633646
source Business Source Complete
subjects Performance enhancement
Similarity
Similarity measures
title A new study of using temporality and weights to improve similarity measures for link prediction of social networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20study%20of%20using%20temporality%20and%C2%A0weights%20to%20improve%20similarity%20measures%20for%20link%20prediction%20of%20social%20networks&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Aghabozorgi,%20Farshad&rft.date=2018-01-01&rft.volume=34&rft.issue=4&rft.spage=2667&rft.epage=2678&rft.pages=2667-2678&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-17770&rft_dat=%3Cproquest_cross%3E2027633646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027633646&rft_id=info:pmid/&rfr_iscdi=true