Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers

Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Particle & particle systems characterization 2018-04, Vol.35 (4), p.n/a
Hauptverfasser: Wetter, Niklaus U., Giehl, Julia M., Butzbach, Felix, Anacleto, Danilo, Jiménez‐Villar, Ernesto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Particle & particle systems characterization
container_volume 35
creator Wetter, Niklaus U.
Giehl, Julia M.
Butzbach, Felix
Anacleto, Danilo
Jiménez‐Villar, Ernesto
description Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strategy for increasing the efficiency of a random laser that consists in using smaller particles, trapped between large particles to serve as absorption and gain centers whereas the large particles control mainly the light diffusion into the sample. Measurements of backscattering cone, sample absorption, reflection, and laser emission are used to determine the samples' transport mean free path, fill fractions, laser efficiency, and the average photon path lengths inside the scattering medium for backscattered pump photons. A record slope efficiency of 50% is reached by optimizing pump photon diffusion and absorption in a powder pellet composed by a polydispersed particle size distribution (smaller particles between bigger ones) from a grinded and sieved 1.33 mol% yttrium vanadate doped with neodymium crystal with mean particle size of 54 µm. A strategy for increasing the efficiency of random lasers is demonstrated that consists in using smaller particles, trapped between large particles, to serve as absorption and gain centers whereas the large particles control the light diffusion into the sample. A record slope efficiency of 50% is obtained by using size control for polydispersed particles of yttrium vanadate doped with neodymium.
doi_str_mv 10.1002/ppsc.201700335
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2027536029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027536029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3835-48bbdf1dda593f03750d1b52f2613495c70a697fe64d6f94848d50978ed5d0973</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wE3iky9ec7EnQz1AcUOagVXIZ0kMGVsxqSl9N87paJLV-cuvu9cOAidExgRAHrTdakeUSA5AGPiAA2IoCTjhOSHaACK8QwKKY_RSUoLAJCCyAEqq9BubZM6F5OzuAob21_48tmy69uP9ym_wj5EPGtX0eCx903duOUKv5ilDZ94YlJPn6Ijb9rkzn5yiGb347fyMZtMH57Ku0lWs4KJjBfzufXEWiMU88ByAZbMBfVUEsaVqHMwUuXeSW6lV7zghRWg8sJZYftkQ3Sx7-1i-Fq7tNKLsI7L_qWmQHPBJFDVU6M9VceQUnRed7H5NHGrCejdUHo3lP4dqhfUXtg0rdv-Q-uqei3_3G_PVmpD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027536029</pqid></control><display><type>article</type><title>Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers</title><source>Access via Wiley Online Library</source><creator>Wetter, Niklaus U. ; Giehl, Julia M. ; Butzbach, Felix ; Anacleto, Danilo ; Jiménez‐Villar, Ernesto</creator><creatorcontrib>Wetter, Niklaus U. ; Giehl, Julia M. ; Butzbach, Felix ; Anacleto, Danilo ; Jiménez‐Villar, Ernesto</creatorcontrib><description>Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strategy for increasing the efficiency of a random laser that consists in using smaller particles, trapped between large particles to serve as absorption and gain centers whereas the large particles control mainly the light diffusion into the sample. Measurements of backscattering cone, sample absorption, reflection, and laser emission are used to determine the samples' transport mean free path, fill fractions, laser efficiency, and the average photon path lengths inside the scattering medium for backscattered pump photons. A record slope efficiency of 50% is reached by optimizing pump photon diffusion and absorption in a powder pellet composed by a polydispersed particle size distribution (smaller particles between bigger ones) from a grinded and sieved 1.33 mol% yttrium vanadate doped with neodymium crystal with mean particle size of 54 µm. A strategy for increasing the efficiency of random lasers is demonstrated that consists in using smaller particles, trapped between large particles, to serve as absorption and gain centers whereas the large particles control the light diffusion into the sample. A record slope efficiency of 50% is obtained by using size control for polydispersed particles of yttrium vanadate doped with neodymium.</description><identifier>ISSN: 0934-0866</identifier><identifier>EISSN: 1521-4117</identifier><identifier>DOI: 10.1002/ppsc.201700335</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Backscattering ; Coherent light ; Diffusion pumps ; Efficiency ; laser materials ; Lasers ; Light sources ; materials ; Neodymium ; Particle size ; Particle size distribution ; photonics in disordered media ; Photons ; random laser ; scattering particles ; Yttrium</subject><ispartof>Particle &amp; particle systems characterization, 2018-04, Vol.35 (4), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3835-48bbdf1dda593f03750d1b52f2613495c70a697fe64d6f94848d50978ed5d0973</citedby><cites>FETCH-LOGICAL-c3835-48bbdf1dda593f03750d1b52f2613495c70a697fe64d6f94848d50978ed5d0973</cites><orcidid>0000-0002-9379-9530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppsc.201700335$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppsc.201700335$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wetter, Niklaus U.</creatorcontrib><creatorcontrib>Giehl, Julia M.</creatorcontrib><creatorcontrib>Butzbach, Felix</creatorcontrib><creatorcontrib>Anacleto, Danilo</creatorcontrib><creatorcontrib>Jiménez‐Villar, Ernesto</creatorcontrib><title>Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers</title><title>Particle &amp; particle systems characterization</title><description>Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strategy for increasing the efficiency of a random laser that consists in using smaller particles, trapped between large particles to serve as absorption and gain centers whereas the large particles control mainly the light diffusion into the sample. Measurements of backscattering cone, sample absorption, reflection, and laser emission are used to determine the samples' transport mean free path, fill fractions, laser efficiency, and the average photon path lengths inside the scattering medium for backscattered pump photons. A record slope efficiency of 50% is reached by optimizing pump photon diffusion and absorption in a powder pellet composed by a polydispersed particle size distribution (smaller particles between bigger ones) from a grinded and sieved 1.33 mol% yttrium vanadate doped with neodymium crystal with mean particle size of 54 µm. A strategy for increasing the efficiency of random lasers is demonstrated that consists in using smaller particles, trapped between large particles, to serve as absorption and gain centers whereas the large particles control the light diffusion into the sample. A record slope efficiency of 50% is obtained by using size control for polydispersed particles of yttrium vanadate doped with neodymium.</description><subject>Absorption</subject><subject>Backscattering</subject><subject>Coherent light</subject><subject>Diffusion pumps</subject><subject>Efficiency</subject><subject>laser materials</subject><subject>Lasers</subject><subject>Light sources</subject><subject>materials</subject><subject>Neodymium</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>photonics in disordered media</subject><subject>Photons</subject><subject>random laser</subject><subject>scattering particles</subject><subject>Yttrium</subject><issn>0934-0866</issn><issn>1521-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wE3iky9ec7EnQz1AcUOagVXIZ0kMGVsxqSl9N87paJLV-cuvu9cOAidExgRAHrTdakeUSA5AGPiAA2IoCTjhOSHaACK8QwKKY_RSUoLAJCCyAEqq9BubZM6F5OzuAob21_48tmy69uP9ym_wj5EPGtX0eCx903duOUKv5ilDZ94YlJPn6Ijb9rkzn5yiGb347fyMZtMH57Ku0lWs4KJjBfzufXEWiMU88ByAZbMBfVUEsaVqHMwUuXeSW6lV7zghRWg8sJZYftkQ3Sx7-1i-Fq7tNKLsI7L_qWmQHPBJFDVU6M9VceQUnRed7H5NHGrCejdUHo3lP4dqhfUXtg0rdv-Q-uqei3_3G_PVmpD</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Wetter, Niklaus U.</creator><creator>Giehl, Julia M.</creator><creator>Butzbach, Felix</creator><creator>Anacleto, Danilo</creator><creator>Jiménez‐Villar, Ernesto</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9379-9530</orcidid></search><sort><creationdate>201804</creationdate><title>Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers</title><author>Wetter, Niklaus U. ; Giehl, Julia M. ; Butzbach, Felix ; Anacleto, Danilo ; Jiménez‐Villar, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3835-48bbdf1dda593f03750d1b52f2613495c70a697fe64d6f94848d50978ed5d0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Backscattering</topic><topic>Coherent light</topic><topic>Diffusion pumps</topic><topic>Efficiency</topic><topic>laser materials</topic><topic>Lasers</topic><topic>Light sources</topic><topic>materials</topic><topic>Neodymium</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>photonics in disordered media</topic><topic>Photons</topic><topic>random laser</topic><topic>scattering particles</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wetter, Niklaus U.</creatorcontrib><creatorcontrib>Giehl, Julia M.</creatorcontrib><creatorcontrib>Butzbach, Felix</creatorcontrib><creatorcontrib>Anacleto, Danilo</creatorcontrib><creatorcontrib>Jiménez‐Villar, Ernesto</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Particle &amp; particle systems characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wetter, Niklaus U.</au><au>Giehl, Julia M.</au><au>Butzbach, Felix</au><au>Anacleto, Danilo</au><au>Jiménez‐Villar, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers</atitle><jtitle>Particle &amp; particle systems characterization</jtitle><date>2018-04</date><risdate>2018</risdate><volume>35</volume><issue>4</issue><epage>n/a</epage><issn>0934-0866</issn><eissn>1521-4117</eissn><abstract>Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strategy for increasing the efficiency of a random laser that consists in using smaller particles, trapped between large particles to serve as absorption and gain centers whereas the large particles control mainly the light diffusion into the sample. Measurements of backscattering cone, sample absorption, reflection, and laser emission are used to determine the samples' transport mean free path, fill fractions, laser efficiency, and the average photon path lengths inside the scattering medium for backscattered pump photons. A record slope efficiency of 50% is reached by optimizing pump photon diffusion and absorption in a powder pellet composed by a polydispersed particle size distribution (smaller particles between bigger ones) from a grinded and sieved 1.33 mol% yttrium vanadate doped with neodymium crystal with mean particle size of 54 µm. A strategy for increasing the efficiency of random lasers is demonstrated that consists in using smaller particles, trapped between large particles, to serve as absorption and gain centers whereas the large particles control the light diffusion into the sample. A record slope efficiency of 50% is obtained by using size control for polydispersed particles of yttrium vanadate doped with neodymium.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppsc.201700335</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9379-9530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0934-0866
ispartof Particle & particle systems characterization, 2018-04, Vol.35 (4), p.n/a
issn 0934-0866
1521-4117
language eng
recordid cdi_proquest_journals_2027536029
source Access via Wiley Online Library
subjects Absorption
Backscattering
Coherent light
Diffusion pumps
Efficiency
laser materials
Lasers
Light sources
materials
Neodymium
Particle size
Particle size distribution
photonics in disordered media
Photons
random laser
scattering particles
Yttrium
title Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polydispersed%20Powders%20(Nd3+:YVO4)%20for%20Ultra%20Efficient%20Random%20Lasers&rft.jtitle=Particle%20&%20particle%20systems%20characterization&rft.au=Wetter,%20Niklaus%20U.&rft.date=2018-04&rft.volume=35&rft.issue=4&rft.epage=n/a&rft.issn=0934-0866&rft.eissn=1521-4117&rft_id=info:doi/10.1002/ppsc.201700335&rft_dat=%3Cproquest_cross%3E2027536029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027536029&rft_id=info:pmid/&rfr_iscdi=true