Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers
Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strate...
Gespeichert in:
Veröffentlicht in: | Particle & particle systems characterization 2018-04, Vol.35 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Particle & particle systems characterization |
container_volume | 35 |
creator | Wetter, Niklaus U. Giehl, Julia M. Butzbach, Felix Anacleto, Danilo Jiménez‐Villar, Ernesto |
description | Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strategy for increasing the efficiency of a random laser that consists in using smaller particles, trapped between large particles to serve as absorption and gain centers whereas the large particles control mainly the light diffusion into the sample. Measurements of backscattering cone, sample absorption, reflection, and laser emission are used to determine the samples' transport mean free path, fill fractions, laser efficiency, and the average photon path lengths inside the scattering medium for backscattered pump photons. A record slope efficiency of 50% is reached by optimizing pump photon diffusion and absorption in a powder pellet composed by a polydispersed particle size distribution (smaller particles between bigger ones) from a grinded and sieved 1.33 mol% yttrium vanadate doped with neodymium crystal with mean particle size of 54 µm.
A strategy for increasing the efficiency of random lasers is demonstrated that consists in using smaller particles, trapped between large particles, to serve as absorption and gain centers whereas the large particles control the light diffusion into the sample. A record slope efficiency of 50% is obtained by using size control for polydispersed particles of yttrium vanadate doped with neodymium. |
doi_str_mv | 10.1002/ppsc.201700335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2027536029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027536029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3835-48bbdf1dda593f03750d1b52f2613495c70a697fe64d6f94848d50978ed5d0973</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wE3iky9ec7EnQz1AcUOagVXIZ0kMGVsxqSl9N87paJLV-cuvu9cOAidExgRAHrTdakeUSA5AGPiAA2IoCTjhOSHaACK8QwKKY_RSUoLAJCCyAEqq9BubZM6F5OzuAob21_48tmy69uP9ym_wj5EPGtX0eCx903duOUKv5ilDZ94YlJPn6Ijb9rkzn5yiGb347fyMZtMH57Ku0lWs4KJjBfzufXEWiMU88ByAZbMBfVUEsaVqHMwUuXeSW6lV7zghRWg8sJZYftkQ3Sx7-1i-Fq7tNKLsI7L_qWmQHPBJFDVU6M9VceQUnRed7H5NHGrCejdUHo3lP4dqhfUXtg0rdv-Q-uqei3_3G_PVmpD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027536029</pqid></control><display><type>article</type><title>Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers</title><source>Access via Wiley Online Library</source><creator>Wetter, Niklaus U. ; Giehl, Julia M. ; Butzbach, Felix ; Anacleto, Danilo ; Jiménez‐Villar, Ernesto</creator><creatorcontrib>Wetter, Niklaus U. ; Giehl, Julia M. ; Butzbach, Felix ; Anacleto, Danilo ; Jiménez‐Villar, Ernesto</creatorcontrib><description>Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strategy for increasing the efficiency of a random laser that consists in using smaller particles, trapped between large particles to serve as absorption and gain centers whereas the large particles control mainly the light diffusion into the sample. Measurements of backscattering cone, sample absorption, reflection, and laser emission are used to determine the samples' transport mean free path, fill fractions, laser efficiency, and the average photon path lengths inside the scattering medium for backscattered pump photons. A record slope efficiency of 50% is reached by optimizing pump photon diffusion and absorption in a powder pellet composed by a polydispersed particle size distribution (smaller particles between bigger ones) from a grinded and sieved 1.33 mol% yttrium vanadate doped with neodymium crystal with mean particle size of 54 µm.
A strategy for increasing the efficiency of random lasers is demonstrated that consists in using smaller particles, trapped between large particles, to serve as absorption and gain centers whereas the large particles control the light diffusion into the sample. A record slope efficiency of 50% is obtained by using size control for polydispersed particles of yttrium vanadate doped with neodymium.</description><identifier>ISSN: 0934-0866</identifier><identifier>EISSN: 1521-4117</identifier><identifier>DOI: 10.1002/ppsc.201700335</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Backscattering ; Coherent light ; Diffusion pumps ; Efficiency ; laser materials ; Lasers ; Light sources ; materials ; Neodymium ; Particle size ; Particle size distribution ; photonics in disordered media ; Photons ; random laser ; scattering particles ; Yttrium</subject><ispartof>Particle & particle systems characterization, 2018-04, Vol.35 (4), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3835-48bbdf1dda593f03750d1b52f2613495c70a697fe64d6f94848d50978ed5d0973</citedby><cites>FETCH-LOGICAL-c3835-48bbdf1dda593f03750d1b52f2613495c70a697fe64d6f94848d50978ed5d0973</cites><orcidid>0000-0002-9379-9530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppsc.201700335$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppsc.201700335$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wetter, Niklaus U.</creatorcontrib><creatorcontrib>Giehl, Julia M.</creatorcontrib><creatorcontrib>Butzbach, Felix</creatorcontrib><creatorcontrib>Anacleto, Danilo</creatorcontrib><creatorcontrib>Jiménez‐Villar, Ernesto</creatorcontrib><title>Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers</title><title>Particle & particle systems characterization</title><description>Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strategy for increasing the efficiency of a random laser that consists in using smaller particles, trapped between large particles to serve as absorption and gain centers whereas the large particles control mainly the light diffusion into the sample. Measurements of backscattering cone, sample absorption, reflection, and laser emission are used to determine the samples' transport mean free path, fill fractions, laser efficiency, and the average photon path lengths inside the scattering medium for backscattered pump photons. A record slope efficiency of 50% is reached by optimizing pump photon diffusion and absorption in a powder pellet composed by a polydispersed particle size distribution (smaller particles between bigger ones) from a grinded and sieved 1.33 mol% yttrium vanadate doped with neodymium crystal with mean particle size of 54 µm.
A strategy for increasing the efficiency of random lasers is demonstrated that consists in using smaller particles, trapped between large particles, to serve as absorption and gain centers whereas the large particles control the light diffusion into the sample. A record slope efficiency of 50% is obtained by using size control for polydispersed particles of yttrium vanadate doped with neodymium.</description><subject>Absorption</subject><subject>Backscattering</subject><subject>Coherent light</subject><subject>Diffusion pumps</subject><subject>Efficiency</subject><subject>laser materials</subject><subject>Lasers</subject><subject>Light sources</subject><subject>materials</subject><subject>Neodymium</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>photonics in disordered media</subject><subject>Photons</subject><subject>random laser</subject><subject>scattering particles</subject><subject>Yttrium</subject><issn>0934-0866</issn><issn>1521-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wE3iky9ec7EnQz1AcUOagVXIZ0kMGVsxqSl9N87paJLV-cuvu9cOAidExgRAHrTdakeUSA5AGPiAA2IoCTjhOSHaACK8QwKKY_RSUoLAJCCyAEqq9BubZM6F5OzuAob21_48tmy69uP9ym_wj5EPGtX0eCx903duOUKv5ilDZ94YlJPn6Ijb9rkzn5yiGb347fyMZtMH57Ku0lWs4KJjBfzufXEWiMU88ByAZbMBfVUEsaVqHMwUuXeSW6lV7zghRWg8sJZYftkQ3Sx7-1i-Fq7tNKLsI7L_qWmQHPBJFDVU6M9VceQUnRed7H5NHGrCejdUHo3lP4dqhfUXtg0rdv-Q-uqei3_3G_PVmpD</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Wetter, Niklaus U.</creator><creator>Giehl, Julia M.</creator><creator>Butzbach, Felix</creator><creator>Anacleto, Danilo</creator><creator>Jiménez‐Villar, Ernesto</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9379-9530</orcidid></search><sort><creationdate>201804</creationdate><title>Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers</title><author>Wetter, Niklaus U. ; Giehl, Julia M. ; Butzbach, Felix ; Anacleto, Danilo ; Jiménez‐Villar, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3835-48bbdf1dda593f03750d1b52f2613495c70a697fe64d6f94848d50978ed5d0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Backscattering</topic><topic>Coherent light</topic><topic>Diffusion pumps</topic><topic>Efficiency</topic><topic>laser materials</topic><topic>Lasers</topic><topic>Light sources</topic><topic>materials</topic><topic>Neodymium</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>photonics in disordered media</topic><topic>Photons</topic><topic>random laser</topic><topic>scattering particles</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wetter, Niklaus U.</creatorcontrib><creatorcontrib>Giehl, Julia M.</creatorcontrib><creatorcontrib>Butzbach, Felix</creatorcontrib><creatorcontrib>Anacleto, Danilo</creatorcontrib><creatorcontrib>Jiménez‐Villar, Ernesto</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Particle & particle systems characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wetter, Niklaus U.</au><au>Giehl, Julia M.</au><au>Butzbach, Felix</au><au>Anacleto, Danilo</au><au>Jiménez‐Villar, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers</atitle><jtitle>Particle & particle systems characterization</jtitle><date>2018-04</date><risdate>2018</risdate><volume>35</volume><issue>4</issue><epage>n/a</epage><issn>0934-0866</issn><eissn>1521-4117</eissn><abstract>Random lasers hold the potential for cheap, coherent light sources that can be miniaturized and molded into any shape with several other added benefits such as speckle‐free imaging; however, they require improvements specifically in terms of efficiency. This paper details for the first time a strategy for increasing the efficiency of a random laser that consists in using smaller particles, trapped between large particles to serve as absorption and gain centers whereas the large particles control mainly the light diffusion into the sample. Measurements of backscattering cone, sample absorption, reflection, and laser emission are used to determine the samples' transport mean free path, fill fractions, laser efficiency, and the average photon path lengths inside the scattering medium for backscattered pump photons. A record slope efficiency of 50% is reached by optimizing pump photon diffusion and absorption in a powder pellet composed by a polydispersed particle size distribution (smaller particles between bigger ones) from a grinded and sieved 1.33 mol% yttrium vanadate doped with neodymium crystal with mean particle size of 54 µm.
A strategy for increasing the efficiency of random lasers is demonstrated that consists in using smaller particles, trapped between large particles, to serve as absorption and gain centers whereas the large particles control the light diffusion into the sample. A record slope efficiency of 50% is obtained by using size control for polydispersed particles of yttrium vanadate doped with neodymium.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppsc.201700335</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9379-9530</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0934-0866 |
ispartof | Particle & particle systems characterization, 2018-04, Vol.35 (4), p.n/a |
issn | 0934-0866 1521-4117 |
language | eng |
recordid | cdi_proquest_journals_2027536029 |
source | Access via Wiley Online Library |
subjects | Absorption Backscattering Coherent light Diffusion pumps Efficiency laser materials Lasers Light sources materials Neodymium Particle size Particle size distribution photonics in disordered media Photons random laser scattering particles Yttrium |
title | Polydispersed Powders (Nd3+:YVO4) for Ultra Efficient Random Lasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polydispersed%20Powders%20(Nd3+:YVO4)%20for%20Ultra%20Efficient%20Random%20Lasers&rft.jtitle=Particle%20&%20particle%20systems%20characterization&rft.au=Wetter,%20Niklaus%20U.&rft.date=2018-04&rft.volume=35&rft.issue=4&rft.epage=n/a&rft.issn=0934-0866&rft.eissn=1521-4117&rft_id=info:doi/10.1002/ppsc.201700335&rft_dat=%3Cproquest_cross%3E2027536029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027536029&rft_id=info:pmid/&rfr_iscdi=true |