Higher-order jump conditions for conservation laws

The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and computational fluid dynamics 2018-08, Vol.32 (4), p.399-409
1. Verfasser: Oksuzoglu, Hakan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 4
container_start_page 399
container_title Theoretical and computational fluid dynamics
container_volume 32
creator Oksuzoglu, Hakan
description The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine–Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers’ equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.
doi_str_mv 10.1007/s00162-018-0458-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2027405172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A549159625</galeid><sourcerecordid>A549159625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-f06a9bc70c1619a8ef4f38bd96f743f9c8360718188471a2c060a53dfa4aad9b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvBc-rkOzmWolYoeNFzSLNJ3dJuarJV_PdmWcGTDMwww_vMDC9CtwTmBEDdFwAiKQaiMXBR0xmaEM4oplTAOZqAYQJzI_kluiplBwBMSD1BdNVu30PGKTchz3anw3HmU9e0fZu6MospD20J-dMNk9nefZVrdBHdvoSb3zpFb48Pr8sVXr88PS8Xa-wZqB5HkM5svAJPJDFOh8gj05vGyKg4i8ZrJkERTbTmijjqQYITrImOO9eYDZuiu3HvMaePUyi93aVT7upJS4EqDoIoWlXzUbV1-2DbLqY-O1-jCYe2_h5iW-cLwQ0RRlJRATICPqdScoj2mNuDy9-WgB28tKOXtnppBy8tVIaOTKnabhvy3yv_Qz-ujXU_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027405172</pqid></control><display><type>article</type><title>Higher-order jump conditions for conservation laws</title><source>SpringerLink Journals</source><creator>Oksuzoglu, Hakan</creator><creatorcontrib>Oksuzoglu, Hakan</creatorcontrib><description>The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine–Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers’ equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/s00162-018-0458-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acceleration ; Analysis ; Classical and Continuum Physics ; Computational Science and Engineering ; Conservation ; Conservation laws ; Conservation laws (Physics) ; Discontinuity ; Dynamics ; Engineering ; Engineering Fluid Dynamics ; Euler-Lagrange equation ; Eulers equations ; Gas dynamics ; Gasdynamics ; Mathematical analysis ; Mathematical models ; Original Article ; Shallow water ; Shallow water equations</subject><ispartof>Theoretical and computational fluid dynamics, 2018-08, Vol.32 (4), p.399-409</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Theoretical and Computational Fluid Dynamics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-f06a9bc70c1619a8ef4f38bd96f743f9c8360718188471a2c060a53dfa4aad9b3</cites><orcidid>0000-0003-3168-5826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00162-018-0458-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00162-018-0458-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Oksuzoglu, Hakan</creatorcontrib><title>Higher-order jump conditions for conservation laws</title><title>Theoretical and computational fluid dynamics</title><addtitle>Theor. Comput. Fluid Dyn</addtitle><description>The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine–Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers’ equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.</description><subject>Acceleration</subject><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Conservation</subject><subject>Conservation laws</subject><subject>Conservation laws (Physics)</subject><subject>Discontinuity</subject><subject>Dynamics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Gas dynamics</subject><subject>Gasdynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Shallow water</subject><subject>Shallow water equations</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvBc-rkOzmWolYoeNFzSLNJ3dJuarJV_PdmWcGTDMwww_vMDC9CtwTmBEDdFwAiKQaiMXBR0xmaEM4oplTAOZqAYQJzI_kluiplBwBMSD1BdNVu30PGKTchz3anw3HmU9e0fZu6MospD20J-dMNk9nefZVrdBHdvoSb3zpFb48Pr8sVXr88PS8Xa-wZqB5HkM5svAJPJDFOh8gj05vGyKg4i8ZrJkERTbTmijjqQYITrImOO9eYDZuiu3HvMaePUyi93aVT7upJS4EqDoIoWlXzUbV1-2DbLqY-O1-jCYe2_h5iW-cLwQ0RRlJRATICPqdScoj2mNuDy9-WgB28tKOXtnppBy8tVIaOTKnabhvy3yv_Qz-ujXU_</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Oksuzoglu, Hakan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0003-3168-5826</orcidid></search><sort><creationdate>20180801</creationdate><title>Higher-order jump conditions for conservation laws</title><author>Oksuzoglu, Hakan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-f06a9bc70c1619a8ef4f38bd96f743f9c8360718188471a2c060a53dfa4aad9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Conservation</topic><topic>Conservation laws</topic><topic>Conservation laws (Physics)</topic><topic>Discontinuity</topic><topic>Dynamics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Gas dynamics</topic><topic>Gasdynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Shallow water</topic><topic>Shallow water equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oksuzoglu, Hakan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oksuzoglu, Hakan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-order jump conditions for conservation laws</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><stitle>Theor. Comput. Fluid Dyn</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>32</volume><issue>4</issue><spage>399</spage><epage>409</epage><pages>399-409</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine–Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers’ equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00162-018-0458-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3168-5826</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-4964
ispartof Theoretical and computational fluid dynamics, 2018-08, Vol.32 (4), p.399-409
issn 0935-4964
1432-2250
language eng
recordid cdi_proquest_journals_2027405172
source SpringerLink Journals
subjects Acceleration
Analysis
Classical and Continuum Physics
Computational Science and Engineering
Conservation
Conservation laws
Conservation laws (Physics)
Discontinuity
Dynamics
Engineering
Engineering Fluid Dynamics
Euler-Lagrange equation
Eulers equations
Gas dynamics
Gasdynamics
Mathematical analysis
Mathematical models
Original Article
Shallow water
Shallow water equations
title Higher-order jump conditions for conservation laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-order%20jump%20conditions%20for%20conservation%20laws&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Oksuzoglu,%20Hakan&rft.date=2018-08-01&rft.volume=32&rft.issue=4&rft.spage=399&rft.epage=409&rft.pages=399-409&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/s00162-018-0458-0&rft_dat=%3Cgale_proqu%3EA549159625%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027405172&rft_id=info:pmid/&rft_galeid=A549159625&rfr_iscdi=true