Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation

The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface‐only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2018-03, Vol.54 (3), p.1476-1492
Hauptverfasser: Akbar, Ruzbeh, Short Gianotti, Daniel, McColl, Kaighin A., Haghighi, Erfan, Salvucci, Guido D., Entekhabi, Dara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1492
container_issue 3
container_start_page 1476
container_title Water resources research
container_volume 54
creator Akbar, Ruzbeh
Short Gianotti, Daniel
McColl, Kaighin A.
Haghighi, Erfan
Salvucci, Guido D.
Entekhabi, Dara
description The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface‐only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface‐only soil moisture observations. To proceed, first an observation‐based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry‐downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root‐mean‐squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation‐driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge‐corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east‐west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale. Key Points Surface soil moisture dynamic often reflects deeper soil water content characteristics By performing water balance closure using only soil moisture and precipitation a length scale can be obtained Estimates of the length scale show an east‐west gradient across US with larger values in wetter regions
doi_str_mv 10.1002/2017WR021508
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2026351903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2026351903</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3685-6bde9097abba4d0f50f835f3b50d7793b23f06c90865ef9aefc523f57fea82b03</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqzQcIeHV1kmw2m6MUtUJFaZUel-zupKZsNzVJkb69K_XgydMww8cM8xNyyeCGAfBbDkwt58CZhPKIjJjO80xpJY7JCCAXGRNanZKzGNcALJeFGpHNdN8G3_mVa0xHF8kHs0I6w36VPuhimGGkc9wGjNgnbGm9H9qNT0gX2EfXr-h9TG5j0uC8pQvvOvrsXUy7gNT0LX0N2LitSyY535-TE2u6iBe_dUzeH-7fJtNs9vL4NLmbZUYUpcyKukUNWpm6NnkLVoIthbSiltAqpUXNhYWi0VAWEq02aBs5jKSyaEpegxiTq8PebfCfO4ypWvtd6IeTFQdeCMk0iEFdH1QTfIwBbbUNwythXzGofgKt_gY6cHHgX67D_b-2Ws4ncy4Yl-IbWgl4Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026351903</pqid></control><display><type>article</type><title>Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Akbar, Ruzbeh ; Short Gianotti, Daniel ; McColl, Kaighin A. ; Haghighi, Erfan ; Salvucci, Guido D. ; Entekhabi, Dara</creator><creatorcontrib>Akbar, Ruzbeh ; Short Gianotti, Daniel ; McColl, Kaighin A. ; Haghighi, Erfan ; Salvucci, Guido D. ; Entekhabi, Dara</creatorcontrib><description>The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface‐only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface‐only soil moisture observations. To proceed, first an observation‐based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry‐downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root‐mean‐squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation‐driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge‐corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east‐west gradient across the contiguous United States (CONUS), such that large Δz depths (&gt;200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale. Key Points Surface soil moisture dynamic often reflects deeper soil water content characteristics By performing water balance closure using only soil moisture and precipitation a length scale can be obtained Estimates of the length scale show an east‐west gradient across US with larger values in wetter regions</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2017WR021508</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Active control ; Climate prediction ; Dynamics ; Fluxes ; Global precipitation ; Hydrology ; Length ; Mean precipitation ; Moisture content ; Moisture loss ; Precipitation ; Remote sensing ; SMAP ; Soil ; Soil analysis ; Soil dynamics ; Soil erosion ; Soil moisture ; Soil properties ; Soil surfaces ; Soil water ; Soil water storage ; Variance analysis ; Water balance ; Water content</subject><ispartof>Water resources research, 2018-03, Vol.54 (3), p.1476-1492</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3685-6bde9097abba4d0f50f835f3b50d7793b23f06c90865ef9aefc523f57fea82b03</citedby><cites>FETCH-LOGICAL-a3685-6bde9097abba4d0f50f835f3b50d7793b23f06c90865ef9aefc523f57fea82b03</cites><orcidid>0000-0002-8362-4761 ; 0000-0002-8358-5619 ; 0000-0003-4891-2474 ; 0000-0001-9201-6760 ; 0000-0003-3609-5972 ; 0000-0002-9963-0488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017WR021508$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017WR021508$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Akbar, Ruzbeh</creatorcontrib><creatorcontrib>Short Gianotti, Daniel</creatorcontrib><creatorcontrib>McColl, Kaighin A.</creatorcontrib><creatorcontrib>Haghighi, Erfan</creatorcontrib><creatorcontrib>Salvucci, Guido D.</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><title>Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation</title><title>Water resources research</title><description>The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface‐only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface‐only soil moisture observations. To proceed, first an observation‐based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry‐downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root‐mean‐squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation‐driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge‐corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east‐west gradient across the contiguous United States (CONUS), such that large Δz depths (&gt;200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale. Key Points Surface soil moisture dynamic often reflects deeper soil water content characteristics By performing water balance closure using only soil moisture and precipitation a length scale can be obtained Estimates of the length scale show an east‐west gradient across US with larger values in wetter regions</description><subject>Active control</subject><subject>Climate prediction</subject><subject>Dynamics</subject><subject>Fluxes</subject><subject>Global precipitation</subject><subject>Hydrology</subject><subject>Length</subject><subject>Mean precipitation</subject><subject>Moisture content</subject><subject>Moisture loss</subject><subject>Precipitation</subject><subject>Remote sensing</subject><subject>SMAP</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil dynamics</subject><subject>Soil erosion</subject><subject>Soil moisture</subject><subject>Soil properties</subject><subject>Soil surfaces</subject><subject>Soil water</subject><subject>Soil water storage</subject><subject>Variance analysis</subject><subject>Water balance</subject><subject>Water content</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqzQcIeHV1kmw2m6MUtUJFaZUel-zupKZsNzVJkb69K_XgydMww8cM8xNyyeCGAfBbDkwt58CZhPKIjJjO80xpJY7JCCAXGRNanZKzGNcALJeFGpHNdN8G3_mVa0xHF8kHs0I6w36VPuhimGGkc9wGjNgnbGm9H9qNT0gX2EfXr-h9TG5j0uC8pQvvOvrsXUy7gNT0LX0N2LitSyY535-TE2u6iBe_dUzeH-7fJtNs9vL4NLmbZUYUpcyKukUNWpm6NnkLVoIthbSiltAqpUXNhYWi0VAWEq02aBs5jKSyaEpegxiTq8PebfCfO4ypWvtd6IeTFQdeCMk0iEFdH1QTfIwBbbUNwythXzGofgKt_gY6cHHgX67D_b-2Ws4ncy4Yl-IbWgl4Ww</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Akbar, Ruzbeh</creator><creator>Short Gianotti, Daniel</creator><creator>McColl, Kaighin A.</creator><creator>Haghighi, Erfan</creator><creator>Salvucci, Guido D.</creator><creator>Entekhabi, Dara</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-8362-4761</orcidid><orcidid>https://orcid.org/0000-0002-8358-5619</orcidid><orcidid>https://orcid.org/0000-0003-4891-2474</orcidid><orcidid>https://orcid.org/0000-0001-9201-6760</orcidid><orcidid>https://orcid.org/0000-0003-3609-5972</orcidid><orcidid>https://orcid.org/0000-0002-9963-0488</orcidid></search><sort><creationdate>201803</creationdate><title>Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation</title><author>Akbar, Ruzbeh ; Short Gianotti, Daniel ; McColl, Kaighin A. ; Haghighi, Erfan ; Salvucci, Guido D. ; Entekhabi, Dara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3685-6bde9097abba4d0f50f835f3b50d7793b23f06c90865ef9aefc523f57fea82b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active control</topic><topic>Climate prediction</topic><topic>Dynamics</topic><topic>Fluxes</topic><topic>Global precipitation</topic><topic>Hydrology</topic><topic>Length</topic><topic>Mean precipitation</topic><topic>Moisture content</topic><topic>Moisture loss</topic><topic>Precipitation</topic><topic>Remote sensing</topic><topic>SMAP</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil dynamics</topic><topic>Soil erosion</topic><topic>Soil moisture</topic><topic>Soil properties</topic><topic>Soil surfaces</topic><topic>Soil water</topic><topic>Soil water storage</topic><topic>Variance analysis</topic><topic>Water balance</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbar, Ruzbeh</creatorcontrib><creatorcontrib>Short Gianotti, Daniel</creatorcontrib><creatorcontrib>McColl, Kaighin A.</creatorcontrib><creatorcontrib>Haghighi, Erfan</creatorcontrib><creatorcontrib>Salvucci, Guido D.</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbar, Ruzbeh</au><au>Short Gianotti, Daniel</au><au>McColl, Kaighin A.</au><au>Haghighi, Erfan</au><au>Salvucci, Guido D.</au><au>Entekhabi, Dara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation</atitle><jtitle>Water resources research</jtitle><date>2018-03</date><risdate>2018</risdate><volume>54</volume><issue>3</issue><spage>1476</spage><epage>1492</epage><pages>1476-1492</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface‐only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface‐only soil moisture observations. To proceed, first an observation‐based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry‐downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root‐mean‐squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation‐driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge‐corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east‐west gradient across the contiguous United States (CONUS), such that large Δz depths (&gt;200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale. Key Points Surface soil moisture dynamic often reflects deeper soil water content characteristics By performing water balance closure using only soil moisture and precipitation a length scale can be obtained Estimates of the length scale show an east‐west gradient across US with larger values in wetter regions</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017WR021508</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8362-4761</orcidid><orcidid>https://orcid.org/0000-0002-8358-5619</orcidid><orcidid>https://orcid.org/0000-0003-4891-2474</orcidid><orcidid>https://orcid.org/0000-0001-9201-6760</orcidid><orcidid>https://orcid.org/0000-0003-3609-5972</orcidid><orcidid>https://orcid.org/0000-0002-9963-0488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2018-03, Vol.54 (3), p.1476-1492
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2026351903
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Active control
Climate prediction
Dynamics
Fluxes
Global precipitation
Hydrology
Length
Mean precipitation
Moisture content
Moisture loss
Precipitation
Remote sensing
SMAP
Soil
Soil analysis
Soil dynamics
Soil erosion
Soil moisture
Soil properties
Soil surfaces
Soil water
Soil water storage
Variance analysis
Water balance
Water content
title Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrological%20Storage%20Length%20Scales%20Represented%20by%20Remote%20Sensing%20Estimates%20of%20Soil%20Moisture%20and%20Precipitation&rft.jtitle=Water%20resources%20research&rft.au=Akbar,%20Ruzbeh&rft.date=2018-03&rft.volume=54&rft.issue=3&rft.spage=1476&rft.epage=1492&rft.pages=1476-1492&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2017WR021508&rft_dat=%3Cproquest_cross%3E2026351903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2026351903&rft_id=info:pmid/&rfr_iscdi=true