Thin Film Condensation on Nanostructured Surfaces

Water vapor condensation is a ubiquitous process in nature and industry. Over the past century, methods achieving dropwise condensation using a thin (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-04, Vol.28 (16), p.n/a
Hauptverfasser: Oh, Junho, Zhang, Runyu, Shetty, Pralav P., Krogstad, Jessica A., Braun, Paul V., Miljkovic, Nenad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced functional materials
container_volume 28
creator Oh, Junho
Zhang, Runyu
Shetty, Pralav P.
Krogstad, Jessica A.
Braun, Paul V.
Miljkovic, Nenad
description Water vapor condensation is a ubiquitous process in nature and industry. Over the past century, methods achieving dropwise condensation using a thin (
doi_str_mv 10.1002/adfm.201707000
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2025918691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025918691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-ee9627eedecfdccfc3e167a21704c1936350b1280f31fee36ed86f50f64531253</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRsFavngOeU2d2k01yLNVUoerBCt6WdTOLKW227iZI_71bKvUoDMzAfG_e8Bi7RpggAL_Vjd1MOGABBQCcsBFKlKkAXp4eZ3w_ZxchrCBihchGDJefbZfU7XqTzFzXUBd037ouifWsOxd6P5h-8NQkr4O32lC4ZGdWrwNd_fYxe6vvl7OHdPEyf5xNF6kR8YWUqJK8IGrI2MYYawShLDSPu8xgJaTI4QN5CVagJRKSmlLaHKzMcoE8F2N2c7i79e5roNCrlRt8Fy0VB55XWMoKIzU5UMa7EDxZtfXtRvudQlD7WNQ-FnWMJQqqg-C7XdPuH1pN7-qnP-0PABJlYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025918691</pqid></control><display><type>article</type><title>Thin Film Condensation on Nanostructured Surfaces</title><source>Wiley Journals</source><creator>Oh, Junho ; Zhang, Runyu ; Shetty, Pralav P. ; Krogstad, Jessica A. ; Braun, Paul V. ; Miljkovic, Nenad</creator><creatorcontrib>Oh, Junho ; Zhang, Runyu ; Shetty, Pralav P. ; Krogstad, Jessica A. ; Braun, Paul V. ; Miljkovic, Nenad</creatorcontrib><description>Water vapor condensation is a ubiquitous process in nature and industry. Over the past century, methods achieving dropwise condensation using a thin (&lt;1 µm) hydrophobic “promoter” layer have been developed, which increases the condensation heat transfer by ten times compared to filmwise condensation. Unfortunately, implementations of dropwise condensation have been limited due to poor durability of the promoter coatings. Here, thin‐film condensation which utilizes a promoter layer not as a condensation surface, but rather to confine the condensate within a porous biphilic nanostructure, nickel inverse opals (NIO) with a thin (&lt;20 nm) hydrophobic top layer of decomposed polyimide is developed. Filmwise condensation confined to thicknesses &lt;10 µm is demonstrated. To test the stability of thin‐film condensation, condensation experiments are performed to show that at higher supersaturations droplets coalescing on top of the hydrophobic layer are absorbed into the superhydrophilic layer through coalescence‐induced transitions. Through detailed thermal‐hydrodynamic modeling, it is shown that thin‐film condensation has the potential to achieve heat transfer coefficients approaching ≈100 kW m−2 while avoiding durability issues by significantly reducing nucleation on the hydrophobic surface. The work presented here develops an approach to potentially ensure durable and high‐performance condensation comparable to dropwise condensation. Thin‐film condensation on hydrophobic‐coated nickel inverse opal structures enables heat transfer performance approaching that of dropwise condensation while achieving higher robustness by confining the condensate film and reducing nucleation on the hydrophobic layer.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201707000</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>biphilic surfaces ; Coalescing ; Condensation ; dropwise condensation ; Durability ; Film condensation ; filmwise condensation ; Heat transfer coefficients ; inverse opals ; Materials science ; thin‐film condensation ; Water vapor</subject><ispartof>Advanced functional materials, 2018-04, Vol.28 (16), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-ee9627eedecfdccfc3e167a21704c1936350b1280f31fee36ed86f50f64531253</citedby><cites>FETCH-LOGICAL-c3170-ee9627eedecfdccfc3e167a21704c1936350b1280f31fee36ed86f50f64531253</cites><orcidid>0000-0003-0115-3132 ; 0000-0002-0866-3680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201707000$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201707000$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Oh, Junho</creatorcontrib><creatorcontrib>Zhang, Runyu</creatorcontrib><creatorcontrib>Shetty, Pralav P.</creatorcontrib><creatorcontrib>Krogstad, Jessica A.</creatorcontrib><creatorcontrib>Braun, Paul V.</creatorcontrib><creatorcontrib>Miljkovic, Nenad</creatorcontrib><title>Thin Film Condensation on Nanostructured Surfaces</title><title>Advanced functional materials</title><description>Water vapor condensation is a ubiquitous process in nature and industry. Over the past century, methods achieving dropwise condensation using a thin (&lt;1 µm) hydrophobic “promoter” layer have been developed, which increases the condensation heat transfer by ten times compared to filmwise condensation. Unfortunately, implementations of dropwise condensation have been limited due to poor durability of the promoter coatings. Here, thin‐film condensation which utilizes a promoter layer not as a condensation surface, but rather to confine the condensate within a porous biphilic nanostructure, nickel inverse opals (NIO) with a thin (&lt;20 nm) hydrophobic top layer of decomposed polyimide is developed. Filmwise condensation confined to thicknesses &lt;10 µm is demonstrated. To test the stability of thin‐film condensation, condensation experiments are performed to show that at higher supersaturations droplets coalescing on top of the hydrophobic layer are absorbed into the superhydrophilic layer through coalescence‐induced transitions. Through detailed thermal‐hydrodynamic modeling, it is shown that thin‐film condensation has the potential to achieve heat transfer coefficients approaching ≈100 kW m−2 while avoiding durability issues by significantly reducing nucleation on the hydrophobic surface. The work presented here develops an approach to potentially ensure durable and high‐performance condensation comparable to dropwise condensation. Thin‐film condensation on hydrophobic‐coated nickel inverse opal structures enables heat transfer performance approaching that of dropwise condensation while achieving higher robustness by confining the condensate film and reducing nucleation on the hydrophobic layer.</description><subject>biphilic surfaces</subject><subject>Coalescing</subject><subject>Condensation</subject><subject>dropwise condensation</subject><subject>Durability</subject><subject>Film condensation</subject><subject>filmwise condensation</subject><subject>Heat transfer coefficients</subject><subject>inverse opals</subject><subject>Materials science</subject><subject>thin‐film condensation</subject><subject>Water vapor</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRsFavngOeU2d2k01yLNVUoerBCt6WdTOLKW227iZI_71bKvUoDMzAfG_e8Bi7RpggAL_Vjd1MOGABBQCcsBFKlKkAXp4eZ3w_ZxchrCBihchGDJefbZfU7XqTzFzXUBd037ouifWsOxd6P5h-8NQkr4O32lC4ZGdWrwNd_fYxe6vvl7OHdPEyf5xNF6kR8YWUqJK8IGrI2MYYawShLDSPu8xgJaTI4QN5CVagJRKSmlLaHKzMcoE8F2N2c7i79e5roNCrlRt8Fy0VB55XWMoKIzU5UMa7EDxZtfXtRvudQlD7WNQ-FnWMJQqqg-C7XdPuH1pN7-qnP-0PABJlYg</recordid><startdate>20180418</startdate><enddate>20180418</enddate><creator>Oh, Junho</creator><creator>Zhang, Runyu</creator><creator>Shetty, Pralav P.</creator><creator>Krogstad, Jessica A.</creator><creator>Braun, Paul V.</creator><creator>Miljkovic, Nenad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0115-3132</orcidid><orcidid>https://orcid.org/0000-0002-0866-3680</orcidid></search><sort><creationdate>20180418</creationdate><title>Thin Film Condensation on Nanostructured Surfaces</title><author>Oh, Junho ; Zhang, Runyu ; Shetty, Pralav P. ; Krogstad, Jessica A. ; Braun, Paul V. ; Miljkovic, Nenad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-ee9627eedecfdccfc3e167a21704c1936350b1280f31fee36ed86f50f64531253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biphilic surfaces</topic><topic>Coalescing</topic><topic>Condensation</topic><topic>dropwise condensation</topic><topic>Durability</topic><topic>Film condensation</topic><topic>filmwise condensation</topic><topic>Heat transfer coefficients</topic><topic>inverse opals</topic><topic>Materials science</topic><topic>thin‐film condensation</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Junho</creatorcontrib><creatorcontrib>Zhang, Runyu</creatorcontrib><creatorcontrib>Shetty, Pralav P.</creatorcontrib><creatorcontrib>Krogstad, Jessica A.</creatorcontrib><creatorcontrib>Braun, Paul V.</creatorcontrib><creatorcontrib>Miljkovic, Nenad</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Junho</au><au>Zhang, Runyu</au><au>Shetty, Pralav P.</au><au>Krogstad, Jessica A.</au><au>Braun, Paul V.</au><au>Miljkovic, Nenad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin Film Condensation on Nanostructured Surfaces</atitle><jtitle>Advanced functional materials</jtitle><date>2018-04-18</date><risdate>2018</risdate><volume>28</volume><issue>16</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Water vapor condensation is a ubiquitous process in nature and industry. Over the past century, methods achieving dropwise condensation using a thin (&lt;1 µm) hydrophobic “promoter” layer have been developed, which increases the condensation heat transfer by ten times compared to filmwise condensation. Unfortunately, implementations of dropwise condensation have been limited due to poor durability of the promoter coatings. Here, thin‐film condensation which utilizes a promoter layer not as a condensation surface, but rather to confine the condensate within a porous biphilic nanostructure, nickel inverse opals (NIO) with a thin (&lt;20 nm) hydrophobic top layer of decomposed polyimide is developed. Filmwise condensation confined to thicknesses &lt;10 µm is demonstrated. To test the stability of thin‐film condensation, condensation experiments are performed to show that at higher supersaturations droplets coalescing on top of the hydrophobic layer are absorbed into the superhydrophilic layer through coalescence‐induced transitions. Through detailed thermal‐hydrodynamic modeling, it is shown that thin‐film condensation has the potential to achieve heat transfer coefficients approaching ≈100 kW m−2 while avoiding durability issues by significantly reducing nucleation on the hydrophobic surface. The work presented here develops an approach to potentially ensure durable and high‐performance condensation comparable to dropwise condensation. Thin‐film condensation on hydrophobic‐coated nickel inverse opal structures enables heat transfer performance approaching that of dropwise condensation while achieving higher robustness by confining the condensate film and reducing nucleation on the hydrophobic layer.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201707000</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0115-3132</orcidid><orcidid>https://orcid.org/0000-0002-0866-3680</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-04, Vol.28 (16), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2025918691
source Wiley Journals
subjects biphilic surfaces
Coalescing
Condensation
dropwise condensation
Durability
Film condensation
filmwise condensation
Heat transfer coefficients
inverse opals
Materials science
thin‐film condensation
Water vapor
title Thin Film Condensation on Nanostructured Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20Film%20Condensation%20on%20Nanostructured%20Surfaces&rft.jtitle=Advanced%20functional%20materials&rft.au=Oh,%20Junho&rft.date=2018-04-18&rft.volume=28&rft.issue=16&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201707000&rft_dat=%3Cproquest_cross%3E2025918691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025918691&rft_id=info:pmid/&rfr_iscdi=true