Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances
Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to me...
Gespeichert in:
Veröffentlicht in: | Radio science 2018-03, Vol.53 (3), p.365-378 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 3 |
container_start_page | 365 |
container_title | Radio science |
container_volume | 53 |
creator | Reinisch, Bodo Galkin, Ivan Belehaki, Anna Paznukhov, Vadym Huang, Xueqin Altadill, David Buresova, Dalia Mielich, Jens Verhulst, Tobias Stankov, Stanimir Blanch, Estefania Kouba, Daniel Hamel, Ryan Kozlov, Alexander Tsagouri, Ioanna Mouzakis, Angelos Messerotti, Mauro Parkinson, Murray Ishii, Mamoru |
description | Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real‐time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde‐to‐Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high‐frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content‐based methodologies is currently being attempted, and the results will be the objective of a follow‐up paper.
Key Points
A new technique exploiting oblique Digisonde‐to‐Digisonde skymap observations is implemented to directly identify TID in real time
The ionosphere is represented by a moving undulated mirror, to relate HF signal parameters to TID characteristics, using the FAS technique
The performance is demonstrated during a period of moderate auroral activity and assessed in respect to prevailing geophysical conditions |
doi_str_mv | 10.1002/2017RS006263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2025907454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025907454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-c1b5b1e3e9a406a9f4caa411cb8158fa34a91ccb82a6dcb567d71a48d3857a673</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs7pnT-g4K3VkzQfzaVsfgyGjm2CdyVNE82szUxax_69lXrhlVeHA897DrwInWO4wgDkmgAWyxUAJzw7QCMsKU2FlC-HaARA85RzoMfoJMYNAKaM0xFaLFzt22TmGx99U5nk0bQ7H94T60Myq0zTOuu0ap1vEm-TdVBfpnbN65DYvpngdDJ1se1CqRpt4ik6sqqO5ux3jtHz3e168pDOn-5nk5t5qikGkmpcshKbzEhFgStpqVaKYqzLHLPcqowqiXW_EcUrXTIuKoEVzassZ0JxkY3RxXB3G_xnZ2JbbHwXmv5lQYAwCYIy2qvLQengYwzGFtvgPlTYFxiKn86Kv531nAx852qz_9cWy-mKAGck-wb8U22x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025907454</pqid></control><display><type>article</type><title>Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Reinisch, Bodo ; Galkin, Ivan ; Belehaki, Anna ; Paznukhov, Vadym ; Huang, Xueqin ; Altadill, David ; Buresova, Dalia ; Mielich, Jens ; Verhulst, Tobias ; Stankov, Stanimir ; Blanch, Estefania ; Kouba, Daniel ; Hamel, Ryan ; Kozlov, Alexander ; Tsagouri, Ioanna ; Mouzakis, Angelos ; Messerotti, Mauro ; Parkinson, Murray ; Ishii, Mamoru</creator><creatorcontrib>Reinisch, Bodo ; Galkin, Ivan ; Belehaki, Anna ; Paznukhov, Vadym ; Huang, Xueqin ; Altadill, David ; Buresova, Dalia ; Mielich, Jens ; Verhulst, Tobias ; Stankov, Stanimir ; Blanch, Estefania ; Kouba, Daniel ; Hamel, Ryan ; Kozlov, Alexander ; Tsagouri, Ioanna ; Mouzakis, Angelos ; Messerotti, Mauro ; Parkinson, Murray ; Ishii, Mamoru</creatorcontrib><description>Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real‐time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde‐to‐Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high‐frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content‐based methodologies is currently being attempted, and the results will be the objective of a follow‐up paper.
Key Points
A new technique exploiting oblique Digisonde‐to‐Digisonde skymap observations is implemented to directly identify TID in real time
The ionosphere is represented by a moving undulated mirror, to relate HF signal parameters to TID characteristics, using the FAS technique
The performance is demonstrated during a period of moderate auroral activity and assessed in respect to prevailing geophysical conditions</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1002/2017RS006263</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Angle of arrival ; Data transmission ; Digisonde ; Electron density ; Exploration ; Global navigation satellite system ; Gravitational waves ; Gravity waves ; Ionospheric propagation ; Magnetometers ; Navigation satellites ; Observatories ; Parameter identification ; Radio waves ; Traveling ionospheric disturbances ; Wave propagation</subject><ispartof>Radio science, 2018-03, Vol.53 (3), p.365-378</ispartof><rights>2018. The Authors.</rights><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-c1b5b1e3e9a406a9f4caa411cb8158fa34a91ccb82a6dcb567d71a48d3857a673</citedby><cites>FETCH-LOGICAL-c4102-c1b5b1e3e9a406a9f4caa411cb8158fa34a91ccb82a6dcb567d71a48d3857a673</cites><orcidid>0000-0002-9402-3152 ; 0000-0002-4476-4577 ; 0000-0002-8438-2776 ; 0000-0001-5337-7598 ; 0000-0003-2199-0763 ; 0000-0003-4209-7333 ; 0000-0002-9816-1130 ; 0000-0002-9270-5387 ; 0000-0002-2771-4973 ; 0000-0002-7286-8509 ; 0000-0002-5422-1963 ; 0000-0001-7730-385X ; 0000-0002-2158-6405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017RS006263$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017RS006263$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Reinisch, Bodo</creatorcontrib><creatorcontrib>Galkin, Ivan</creatorcontrib><creatorcontrib>Belehaki, Anna</creatorcontrib><creatorcontrib>Paznukhov, Vadym</creatorcontrib><creatorcontrib>Huang, Xueqin</creatorcontrib><creatorcontrib>Altadill, David</creatorcontrib><creatorcontrib>Buresova, Dalia</creatorcontrib><creatorcontrib>Mielich, Jens</creatorcontrib><creatorcontrib>Verhulst, Tobias</creatorcontrib><creatorcontrib>Stankov, Stanimir</creatorcontrib><creatorcontrib>Blanch, Estefania</creatorcontrib><creatorcontrib>Kouba, Daniel</creatorcontrib><creatorcontrib>Hamel, Ryan</creatorcontrib><creatorcontrib>Kozlov, Alexander</creatorcontrib><creatorcontrib>Tsagouri, Ioanna</creatorcontrib><creatorcontrib>Mouzakis, Angelos</creatorcontrib><creatorcontrib>Messerotti, Mauro</creatorcontrib><creatorcontrib>Parkinson, Murray</creatorcontrib><creatorcontrib>Ishii, Mamoru</creatorcontrib><title>Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances</title><title>Radio science</title><description>Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real‐time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde‐to‐Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high‐frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content‐based methodologies is currently being attempted, and the results will be the objective of a follow‐up paper.
Key Points
A new technique exploiting oblique Digisonde‐to‐Digisonde skymap observations is implemented to directly identify TID in real time
The ionosphere is represented by a moving undulated mirror, to relate HF signal parameters to TID characteristics, using the FAS technique
The performance is demonstrated during a period of moderate auroral activity and assessed in respect to prevailing geophysical conditions</description><subject>Angle of arrival</subject><subject>Data transmission</subject><subject>Digisonde</subject><subject>Electron density</subject><subject>Exploration</subject><subject>Global navigation satellite system</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Ionospheric propagation</subject><subject>Magnetometers</subject><subject>Navigation satellites</subject><subject>Observatories</subject><subject>Parameter identification</subject><subject>Radio waves</subject><subject>Traveling ionospheric disturbances</subject><subject>Wave propagation</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90F1LwzAUBuAgCs7pnT-g4K3VkzQfzaVsfgyGjm2CdyVNE82szUxax_69lXrhlVeHA897DrwInWO4wgDkmgAWyxUAJzw7QCMsKU2FlC-HaARA85RzoMfoJMYNAKaM0xFaLFzt22TmGx99U5nk0bQ7H94T60Myq0zTOuu0ap1vEm-TdVBfpnbN65DYvpngdDJ1se1CqRpt4ik6sqqO5ux3jtHz3e168pDOn-5nk5t5qikGkmpcshKbzEhFgStpqVaKYqzLHLPcqowqiXW_EcUrXTIuKoEVzassZ0JxkY3RxXB3G_xnZ2JbbHwXmv5lQYAwCYIy2qvLQengYwzGFtvgPlTYFxiKn86Kv531nAx852qz_9cWy-mKAGck-wb8U22x</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Reinisch, Bodo</creator><creator>Galkin, Ivan</creator><creator>Belehaki, Anna</creator><creator>Paznukhov, Vadym</creator><creator>Huang, Xueqin</creator><creator>Altadill, David</creator><creator>Buresova, Dalia</creator><creator>Mielich, Jens</creator><creator>Verhulst, Tobias</creator><creator>Stankov, Stanimir</creator><creator>Blanch, Estefania</creator><creator>Kouba, Daniel</creator><creator>Hamel, Ryan</creator><creator>Kozlov, Alexander</creator><creator>Tsagouri, Ioanna</creator><creator>Mouzakis, Angelos</creator><creator>Messerotti, Mauro</creator><creator>Parkinson, Murray</creator><creator>Ishii, Mamoru</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9402-3152</orcidid><orcidid>https://orcid.org/0000-0002-4476-4577</orcidid><orcidid>https://orcid.org/0000-0002-8438-2776</orcidid><orcidid>https://orcid.org/0000-0001-5337-7598</orcidid><orcidid>https://orcid.org/0000-0003-2199-0763</orcidid><orcidid>https://orcid.org/0000-0003-4209-7333</orcidid><orcidid>https://orcid.org/0000-0002-9816-1130</orcidid><orcidid>https://orcid.org/0000-0002-9270-5387</orcidid><orcidid>https://orcid.org/0000-0002-2771-4973</orcidid><orcidid>https://orcid.org/0000-0002-7286-8509</orcidid><orcidid>https://orcid.org/0000-0002-5422-1963</orcidid><orcidid>https://orcid.org/0000-0001-7730-385X</orcidid><orcidid>https://orcid.org/0000-0002-2158-6405</orcidid></search><sort><creationdate>201803</creationdate><title>Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances</title><author>Reinisch, Bodo ; Galkin, Ivan ; Belehaki, Anna ; Paznukhov, Vadym ; Huang, Xueqin ; Altadill, David ; Buresova, Dalia ; Mielich, Jens ; Verhulst, Tobias ; Stankov, Stanimir ; Blanch, Estefania ; Kouba, Daniel ; Hamel, Ryan ; Kozlov, Alexander ; Tsagouri, Ioanna ; Mouzakis, Angelos ; Messerotti, Mauro ; Parkinson, Murray ; Ishii, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-c1b5b1e3e9a406a9f4caa411cb8158fa34a91ccb82a6dcb567d71a48d3857a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angle of arrival</topic><topic>Data transmission</topic><topic>Digisonde</topic><topic>Electron density</topic><topic>Exploration</topic><topic>Global navigation satellite system</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Ionospheric propagation</topic><topic>Magnetometers</topic><topic>Navigation satellites</topic><topic>Observatories</topic><topic>Parameter identification</topic><topic>Radio waves</topic><topic>Traveling ionospheric disturbances</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinisch, Bodo</creatorcontrib><creatorcontrib>Galkin, Ivan</creatorcontrib><creatorcontrib>Belehaki, Anna</creatorcontrib><creatorcontrib>Paznukhov, Vadym</creatorcontrib><creatorcontrib>Huang, Xueqin</creatorcontrib><creatorcontrib>Altadill, David</creatorcontrib><creatorcontrib>Buresova, Dalia</creatorcontrib><creatorcontrib>Mielich, Jens</creatorcontrib><creatorcontrib>Verhulst, Tobias</creatorcontrib><creatorcontrib>Stankov, Stanimir</creatorcontrib><creatorcontrib>Blanch, Estefania</creatorcontrib><creatorcontrib>Kouba, Daniel</creatorcontrib><creatorcontrib>Hamel, Ryan</creatorcontrib><creatorcontrib>Kozlov, Alexander</creatorcontrib><creatorcontrib>Tsagouri, Ioanna</creatorcontrib><creatorcontrib>Mouzakis, Angelos</creatorcontrib><creatorcontrib>Messerotti, Mauro</creatorcontrib><creatorcontrib>Parkinson, Murray</creatorcontrib><creatorcontrib>Ishii, Mamoru</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinisch, Bodo</au><au>Galkin, Ivan</au><au>Belehaki, Anna</au><au>Paznukhov, Vadym</au><au>Huang, Xueqin</au><au>Altadill, David</au><au>Buresova, Dalia</au><au>Mielich, Jens</au><au>Verhulst, Tobias</au><au>Stankov, Stanimir</au><au>Blanch, Estefania</au><au>Kouba, Daniel</au><au>Hamel, Ryan</au><au>Kozlov, Alexander</au><au>Tsagouri, Ioanna</au><au>Mouzakis, Angelos</au><au>Messerotti, Mauro</au><au>Parkinson, Murray</au><au>Ishii, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances</atitle><jtitle>Radio science</jtitle><date>2018-03</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>365</spage><epage>378</epage><pages>365-378</pages><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real‐time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde‐to‐Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high‐frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content‐based methodologies is currently being attempted, and the results will be the objective of a follow‐up paper.
Key Points
A new technique exploiting oblique Digisonde‐to‐Digisonde skymap observations is implemented to directly identify TID in real time
The ionosphere is represented by a moving undulated mirror, to relate HF signal parameters to TID characteristics, using the FAS technique
The performance is demonstrated during a period of moderate auroral activity and assessed in respect to prevailing geophysical conditions</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017RS006263</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9402-3152</orcidid><orcidid>https://orcid.org/0000-0002-4476-4577</orcidid><orcidid>https://orcid.org/0000-0002-8438-2776</orcidid><orcidid>https://orcid.org/0000-0001-5337-7598</orcidid><orcidid>https://orcid.org/0000-0003-2199-0763</orcidid><orcidid>https://orcid.org/0000-0003-4209-7333</orcidid><orcidid>https://orcid.org/0000-0002-9816-1130</orcidid><orcidid>https://orcid.org/0000-0002-9270-5387</orcidid><orcidid>https://orcid.org/0000-0002-2771-4973</orcidid><orcidid>https://orcid.org/0000-0002-7286-8509</orcidid><orcidid>https://orcid.org/0000-0002-5422-1963</orcidid><orcidid>https://orcid.org/0000-0001-7730-385X</orcidid><orcidid>https://orcid.org/0000-0002-2158-6405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-6604 |
ispartof | Radio science, 2018-03, Vol.53 (3), p.365-378 |
issn | 0048-6604 1944-799X |
language | eng |
recordid | cdi_proquest_journals_2025907454 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Angle of arrival Data transmission Digisonde Electron density Exploration Global navigation satellite system Gravitational waves Gravity waves Ionospheric propagation Magnetometers Navigation satellites Observatories Parameter identification Radio waves Traveling ionospheric disturbances Wave propagation |
title | Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pilot%20Ionosonde%20Network%20for%20Identification%20of%20Traveling%20Ionospheric%20Disturbances&rft.jtitle=Radio%20science&rft.au=Reinisch,%20Bodo&rft.date=2018-03&rft.volume=53&rft.issue=3&rft.spage=365&rft.epage=378&rft.pages=365-378&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1002/2017RS006263&rft_dat=%3Cproquest_cross%3E2025907454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025907454&rft_id=info:pmid/&rfr_iscdi=true |