Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances

Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radio science 2018-03, Vol.53 (3), p.365-378
Hauptverfasser: Reinisch, Bodo, Galkin, Ivan, Belehaki, Anna, Paznukhov, Vadym, Huang, Xueqin, Altadill, David, Buresova, Dalia, Mielich, Jens, Verhulst, Tobias, Stankov, Stanimir, Blanch, Estefania, Kouba, Daniel, Hamel, Ryan, Kozlov, Alexander, Tsagouri, Ioanna, Mouzakis, Angelos, Messerotti, Mauro, Parkinson, Murray, Ishii, Mamoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue 3
container_start_page 365
container_title Radio science
container_volume 53
creator Reinisch, Bodo
Galkin, Ivan
Belehaki, Anna
Paznukhov, Vadym
Huang, Xueqin
Altadill, David
Buresova, Dalia
Mielich, Jens
Verhulst, Tobias
Stankov, Stanimir
Blanch, Estefania
Kouba, Daniel
Hamel, Ryan
Kozlov, Alexander
Tsagouri, Ioanna
Mouzakis, Angelos
Messerotti, Mauro
Parkinson, Murray
Ishii, Mamoru
description Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real‐time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde‐to‐Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high‐frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content‐based methodologies is currently being attempted, and the results will be the objective of a follow‐up paper. Key Points A new technique exploiting oblique Digisonde‐to‐Digisonde skymap observations is implemented to directly identify TID in real time The ionosphere is represented by a moving undulated mirror, to relate HF signal parameters to TID characteristics, using the FAS technique The performance is demonstrated during a period of moderate auroral activity and assessed in respect to prevailing geophysical conditions
doi_str_mv 10.1002/2017RS006263
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2025907454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025907454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-c1b5b1e3e9a406a9f4caa411cb8158fa34a91ccb82a6dcb567d71a48d3857a673</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs7pnT-g4K3VkzQfzaVsfgyGjm2CdyVNE82szUxax_69lXrhlVeHA897DrwInWO4wgDkmgAWyxUAJzw7QCMsKU2FlC-HaARA85RzoMfoJMYNAKaM0xFaLFzt22TmGx99U5nk0bQ7H94T60Myq0zTOuu0ap1vEm-TdVBfpnbN65DYvpngdDJ1se1CqRpt4ik6sqqO5ux3jtHz3e168pDOn-5nk5t5qikGkmpcshKbzEhFgStpqVaKYqzLHLPcqowqiXW_EcUrXTIuKoEVzassZ0JxkY3RxXB3G_xnZ2JbbHwXmv5lQYAwCYIy2qvLQengYwzGFtvgPlTYFxiKn86Kv531nAx852qz_9cWy-mKAGck-wb8U22x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025907454</pqid></control><display><type>article</type><title>Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Reinisch, Bodo ; Galkin, Ivan ; Belehaki, Anna ; Paznukhov, Vadym ; Huang, Xueqin ; Altadill, David ; Buresova, Dalia ; Mielich, Jens ; Verhulst, Tobias ; Stankov, Stanimir ; Blanch, Estefania ; Kouba, Daniel ; Hamel, Ryan ; Kozlov, Alexander ; Tsagouri, Ioanna ; Mouzakis, Angelos ; Messerotti, Mauro ; Parkinson, Murray ; Ishii, Mamoru</creator><creatorcontrib>Reinisch, Bodo ; Galkin, Ivan ; Belehaki, Anna ; Paznukhov, Vadym ; Huang, Xueqin ; Altadill, David ; Buresova, Dalia ; Mielich, Jens ; Verhulst, Tobias ; Stankov, Stanimir ; Blanch, Estefania ; Kouba, Daniel ; Hamel, Ryan ; Kozlov, Alexander ; Tsagouri, Ioanna ; Mouzakis, Angelos ; Messerotti, Mauro ; Parkinson, Murray ; Ishii, Mamoru</creatorcontrib><description>Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real‐time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde‐to‐Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high‐frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content‐based methodologies is currently being attempted, and the results will be the objective of a follow‐up paper. Key Points A new technique exploiting oblique Digisonde‐to‐Digisonde skymap observations is implemented to directly identify TID in real time The ionosphere is represented by a moving undulated mirror, to relate HF signal parameters to TID characteristics, using the FAS technique The performance is demonstrated during a period of moderate auroral activity and assessed in respect to prevailing geophysical conditions</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1002/2017RS006263</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Angle of arrival ; Data transmission ; Digisonde ; Electron density ; Exploration ; Global navigation satellite system ; Gravitational waves ; Gravity waves ; Ionospheric propagation ; Magnetometers ; Navigation satellites ; Observatories ; Parameter identification ; Radio waves ; Traveling ionospheric disturbances ; Wave propagation</subject><ispartof>Radio science, 2018-03, Vol.53 (3), p.365-378</ispartof><rights>2018. The Authors.</rights><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-c1b5b1e3e9a406a9f4caa411cb8158fa34a91ccb82a6dcb567d71a48d3857a673</citedby><cites>FETCH-LOGICAL-c4102-c1b5b1e3e9a406a9f4caa411cb8158fa34a91ccb82a6dcb567d71a48d3857a673</cites><orcidid>0000-0002-9402-3152 ; 0000-0002-4476-4577 ; 0000-0002-8438-2776 ; 0000-0001-5337-7598 ; 0000-0003-2199-0763 ; 0000-0003-4209-7333 ; 0000-0002-9816-1130 ; 0000-0002-9270-5387 ; 0000-0002-2771-4973 ; 0000-0002-7286-8509 ; 0000-0002-5422-1963 ; 0000-0001-7730-385X ; 0000-0002-2158-6405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017RS006263$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017RS006263$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Reinisch, Bodo</creatorcontrib><creatorcontrib>Galkin, Ivan</creatorcontrib><creatorcontrib>Belehaki, Anna</creatorcontrib><creatorcontrib>Paznukhov, Vadym</creatorcontrib><creatorcontrib>Huang, Xueqin</creatorcontrib><creatorcontrib>Altadill, David</creatorcontrib><creatorcontrib>Buresova, Dalia</creatorcontrib><creatorcontrib>Mielich, Jens</creatorcontrib><creatorcontrib>Verhulst, Tobias</creatorcontrib><creatorcontrib>Stankov, Stanimir</creatorcontrib><creatorcontrib>Blanch, Estefania</creatorcontrib><creatorcontrib>Kouba, Daniel</creatorcontrib><creatorcontrib>Hamel, Ryan</creatorcontrib><creatorcontrib>Kozlov, Alexander</creatorcontrib><creatorcontrib>Tsagouri, Ioanna</creatorcontrib><creatorcontrib>Mouzakis, Angelos</creatorcontrib><creatorcontrib>Messerotti, Mauro</creatorcontrib><creatorcontrib>Parkinson, Murray</creatorcontrib><creatorcontrib>Ishii, Mamoru</creatorcontrib><title>Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances</title><title>Radio science</title><description>Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real‐time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde‐to‐Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high‐frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content‐based methodologies is currently being attempted, and the results will be the objective of a follow‐up paper. Key Points A new technique exploiting oblique Digisonde‐to‐Digisonde skymap observations is implemented to directly identify TID in real time The ionosphere is represented by a moving undulated mirror, to relate HF signal parameters to TID characteristics, using the FAS technique The performance is demonstrated during a period of moderate auroral activity and assessed in respect to prevailing geophysical conditions</description><subject>Angle of arrival</subject><subject>Data transmission</subject><subject>Digisonde</subject><subject>Electron density</subject><subject>Exploration</subject><subject>Global navigation satellite system</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Ionospheric propagation</subject><subject>Magnetometers</subject><subject>Navigation satellites</subject><subject>Observatories</subject><subject>Parameter identification</subject><subject>Radio waves</subject><subject>Traveling ionospheric disturbances</subject><subject>Wave propagation</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90F1LwzAUBuAgCs7pnT-g4K3VkzQfzaVsfgyGjm2CdyVNE82szUxax_69lXrhlVeHA897DrwInWO4wgDkmgAWyxUAJzw7QCMsKU2FlC-HaARA85RzoMfoJMYNAKaM0xFaLFzt22TmGx99U5nk0bQ7H94T60Myq0zTOuu0ap1vEm-TdVBfpnbN65DYvpngdDJ1se1CqRpt4ik6sqqO5ux3jtHz3e168pDOn-5nk5t5qikGkmpcshKbzEhFgStpqVaKYqzLHLPcqowqiXW_EcUrXTIuKoEVzassZ0JxkY3RxXB3G_xnZ2JbbHwXmv5lQYAwCYIy2qvLQengYwzGFtvgPlTYFxiKn86Kv531nAx852qz_9cWy-mKAGck-wb8U22x</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Reinisch, Bodo</creator><creator>Galkin, Ivan</creator><creator>Belehaki, Anna</creator><creator>Paznukhov, Vadym</creator><creator>Huang, Xueqin</creator><creator>Altadill, David</creator><creator>Buresova, Dalia</creator><creator>Mielich, Jens</creator><creator>Verhulst, Tobias</creator><creator>Stankov, Stanimir</creator><creator>Blanch, Estefania</creator><creator>Kouba, Daniel</creator><creator>Hamel, Ryan</creator><creator>Kozlov, Alexander</creator><creator>Tsagouri, Ioanna</creator><creator>Mouzakis, Angelos</creator><creator>Messerotti, Mauro</creator><creator>Parkinson, Murray</creator><creator>Ishii, Mamoru</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9402-3152</orcidid><orcidid>https://orcid.org/0000-0002-4476-4577</orcidid><orcidid>https://orcid.org/0000-0002-8438-2776</orcidid><orcidid>https://orcid.org/0000-0001-5337-7598</orcidid><orcidid>https://orcid.org/0000-0003-2199-0763</orcidid><orcidid>https://orcid.org/0000-0003-4209-7333</orcidid><orcidid>https://orcid.org/0000-0002-9816-1130</orcidid><orcidid>https://orcid.org/0000-0002-9270-5387</orcidid><orcidid>https://orcid.org/0000-0002-2771-4973</orcidid><orcidid>https://orcid.org/0000-0002-7286-8509</orcidid><orcidid>https://orcid.org/0000-0002-5422-1963</orcidid><orcidid>https://orcid.org/0000-0001-7730-385X</orcidid><orcidid>https://orcid.org/0000-0002-2158-6405</orcidid></search><sort><creationdate>201803</creationdate><title>Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances</title><author>Reinisch, Bodo ; Galkin, Ivan ; Belehaki, Anna ; Paznukhov, Vadym ; Huang, Xueqin ; Altadill, David ; Buresova, Dalia ; Mielich, Jens ; Verhulst, Tobias ; Stankov, Stanimir ; Blanch, Estefania ; Kouba, Daniel ; Hamel, Ryan ; Kozlov, Alexander ; Tsagouri, Ioanna ; Mouzakis, Angelos ; Messerotti, Mauro ; Parkinson, Murray ; Ishii, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-c1b5b1e3e9a406a9f4caa411cb8158fa34a91ccb82a6dcb567d71a48d3857a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angle of arrival</topic><topic>Data transmission</topic><topic>Digisonde</topic><topic>Electron density</topic><topic>Exploration</topic><topic>Global navigation satellite system</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Ionospheric propagation</topic><topic>Magnetometers</topic><topic>Navigation satellites</topic><topic>Observatories</topic><topic>Parameter identification</topic><topic>Radio waves</topic><topic>Traveling ionospheric disturbances</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinisch, Bodo</creatorcontrib><creatorcontrib>Galkin, Ivan</creatorcontrib><creatorcontrib>Belehaki, Anna</creatorcontrib><creatorcontrib>Paznukhov, Vadym</creatorcontrib><creatorcontrib>Huang, Xueqin</creatorcontrib><creatorcontrib>Altadill, David</creatorcontrib><creatorcontrib>Buresova, Dalia</creatorcontrib><creatorcontrib>Mielich, Jens</creatorcontrib><creatorcontrib>Verhulst, Tobias</creatorcontrib><creatorcontrib>Stankov, Stanimir</creatorcontrib><creatorcontrib>Blanch, Estefania</creatorcontrib><creatorcontrib>Kouba, Daniel</creatorcontrib><creatorcontrib>Hamel, Ryan</creatorcontrib><creatorcontrib>Kozlov, Alexander</creatorcontrib><creatorcontrib>Tsagouri, Ioanna</creatorcontrib><creatorcontrib>Mouzakis, Angelos</creatorcontrib><creatorcontrib>Messerotti, Mauro</creatorcontrib><creatorcontrib>Parkinson, Murray</creatorcontrib><creatorcontrib>Ishii, Mamoru</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinisch, Bodo</au><au>Galkin, Ivan</au><au>Belehaki, Anna</au><au>Paznukhov, Vadym</au><au>Huang, Xueqin</au><au>Altadill, David</au><au>Buresova, Dalia</au><au>Mielich, Jens</au><au>Verhulst, Tobias</au><au>Stankov, Stanimir</au><au>Blanch, Estefania</au><au>Kouba, Daniel</au><au>Hamel, Ryan</au><au>Kozlov, Alexander</au><au>Tsagouri, Ioanna</au><au>Mouzakis, Angelos</au><au>Messerotti, Mauro</au><au>Parkinson, Murray</au><au>Ishii, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances</atitle><jtitle>Radio science</jtitle><date>2018-03</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>365</spage><epage>378</epage><pages>365-378</pages><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real‐time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde‐to‐Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high‐frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content‐based methodologies is currently being attempted, and the results will be the objective of a follow‐up paper. Key Points A new technique exploiting oblique Digisonde‐to‐Digisonde skymap observations is implemented to directly identify TID in real time The ionosphere is represented by a moving undulated mirror, to relate HF signal parameters to TID characteristics, using the FAS technique The performance is demonstrated during a period of moderate auroral activity and assessed in respect to prevailing geophysical conditions</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017RS006263</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9402-3152</orcidid><orcidid>https://orcid.org/0000-0002-4476-4577</orcidid><orcidid>https://orcid.org/0000-0002-8438-2776</orcidid><orcidid>https://orcid.org/0000-0001-5337-7598</orcidid><orcidid>https://orcid.org/0000-0003-2199-0763</orcidid><orcidid>https://orcid.org/0000-0003-4209-7333</orcidid><orcidid>https://orcid.org/0000-0002-9816-1130</orcidid><orcidid>https://orcid.org/0000-0002-9270-5387</orcidid><orcidid>https://orcid.org/0000-0002-2771-4973</orcidid><orcidid>https://orcid.org/0000-0002-7286-8509</orcidid><orcidid>https://orcid.org/0000-0002-5422-1963</orcidid><orcidid>https://orcid.org/0000-0001-7730-385X</orcidid><orcidid>https://orcid.org/0000-0002-2158-6405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-6604
ispartof Radio science, 2018-03, Vol.53 (3), p.365-378
issn 0048-6604
1944-799X
language eng
recordid cdi_proquest_journals_2025907454
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Angle of arrival
Data transmission
Digisonde
Electron density
Exploration
Global navigation satellite system
Gravitational waves
Gravity waves
Ionospheric propagation
Magnetometers
Navigation satellites
Observatories
Parameter identification
Radio waves
Traveling ionospheric disturbances
Wave propagation
title Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pilot%20Ionosonde%20Network%20for%20Identification%20of%20Traveling%20Ionospheric%20Disturbances&rft.jtitle=Radio%20science&rft.au=Reinisch,%20Bodo&rft.date=2018-03&rft.volume=53&rft.issue=3&rft.spage=365&rft.epage=378&rft.pages=365-378&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1002/2017RS006263&rft_dat=%3Cproquest_cross%3E2025907454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025907454&rft_id=info:pmid/&rfr_iscdi=true