Emulation of a process-based estuarine hydrodynamic model

Emulation modelling can be an effective alternative to traditional mechanistic approaches for complex environmental systems and, if carefully conceived, can offer significantly reduced run times and user expertise requirements. We present a case study of dynamic emulation for the domain of estuarine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological sciences journal 2018-04, Vol.63 (5), p.783-802
Hauptverfasser: Chen, Limin, Roy, Sujoy B., Hutton, Paul H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 5
container_start_page 783
container_title Hydrological sciences journal
container_volume 63
creator Chen, Limin
Roy, Sujoy B.
Hutton, Paul H.
description Emulation modelling can be an effective alternative to traditional mechanistic approaches for complex environmental systems and, if carefully conceived, can offer significantly reduced run times and user expertise requirements. We present a case study of dynamic emulation for the domain of estuarine water quality modelling, by reporting the development and evaluation of a one-dimensional hydrodynamic model emulator. The proposed "neuroemulator" retains the dynamic nature of the process-based model utilizing a set of artificial neural networks. The underlying hydrodynamic model is routinely used for analysis and management of the northern reach of the San Francisco Bay-Delta estuary, a large complex region of strategic importance for water supply and ecosystem services on the Pacific coast of California, USA. The reduced computational expense of the emulator affords opportunities for direct use, as well as embedded use within other modelling frameworks such as those developed for reservoir operations and socio-hydrology.
doi_str_mv 10.1080/02626667.2018.1447112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2025890190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025890190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-694c32ac07aa7221aa75988a02166bdd420d5d5437bda31dbdb4dbd96ed52e2d3</originalsourceid><addsrcrecordid>eNo1kMtqwzAQRUVpoW7aTygYunY6M3rYWpaQPiDQTbsWsqVQB9tKJXuRv69N0s2dzeHO5TD2iLBGqOAZSJFSqlwTYLVGIUpEumIZoYSCCy6vWbYwxQLdsruUDgBcaMUzprf91NmxDUMe9rnNjzE0PqWitsm73KdxsrEdfP5zcjG402D7tsn74Hx3z272tkv-4XJX7Pt1-7V5L3afbx-bl13RUIVjobRoONkGSmtLIpxT6qqyQKhU7ZwgcNJJwcvaWY6udrWYQyvvJHlyfMWezr3ztN9pXmQOYYrD_NIQkKw0oIaZkmeqiSGl6PfmGNvexpNBMIsl82_JLJbMxRL_A7BaWcE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025890190</pqid></control><display><type>article</type><title>Emulation of a process-based estuarine hydrodynamic model</title><source>Taylor &amp; Francis:Master (3349 titles)</source><source>Alma/SFX Local Collection</source><creator>Chen, Limin ; Roy, Sujoy B. ; Hutton, Paul H.</creator><creatorcontrib>Chen, Limin ; Roy, Sujoy B. ; Hutton, Paul H.</creatorcontrib><description>Emulation modelling can be an effective alternative to traditional mechanistic approaches for complex environmental systems and, if carefully conceived, can offer significantly reduced run times and user expertise requirements. We present a case study of dynamic emulation for the domain of estuarine water quality modelling, by reporting the development and evaluation of a one-dimensional hydrodynamic model emulator. The proposed "neuroemulator" retains the dynamic nature of the process-based model utilizing a set of artificial neural networks. The underlying hydrodynamic model is routinely used for analysis and management of the northern reach of the San Francisco Bay-Delta estuary, a large complex region of strategic importance for water supply and ecosystem services on the Pacific coast of California, USA. The reduced computational expense of the emulator affords opportunities for direct use, as well as embedded use within other modelling frameworks such as those developed for reservoir operations and socio-hydrology.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2018.1447112</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Ltd</publisher><subject>Artificial neural networks ; Brackishwater environment ; Case studies ; Ecosystem services ; Estuaries ; Estuarine dynamics ; Estuarine environments ; Estuarine water ; Evaluation ; Hydrodynamic models ; Hydrodynamics ; Hydrology ; Modelling ; Neural networks ; System effectiveness ; Water quality ; Water supply</subject><ispartof>Hydrological sciences journal, 2018-04, Vol.63 (5), p.783-802</ispartof><rights>2018 IAHS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-694c32ac07aa7221aa75988a02166bdd420d5d5437bda31dbdb4dbd96ed52e2d3</citedby><cites>FETCH-LOGICAL-c281t-694c32ac07aa7221aa75988a02166bdd420d5d5437bda31dbdb4dbd96ed52e2d3</cites><orcidid>0000-0003-2143-7124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chen, Limin</creatorcontrib><creatorcontrib>Roy, Sujoy B.</creatorcontrib><creatorcontrib>Hutton, Paul H.</creatorcontrib><title>Emulation of a process-based estuarine hydrodynamic model</title><title>Hydrological sciences journal</title><description>Emulation modelling can be an effective alternative to traditional mechanistic approaches for complex environmental systems and, if carefully conceived, can offer significantly reduced run times and user expertise requirements. We present a case study of dynamic emulation for the domain of estuarine water quality modelling, by reporting the development and evaluation of a one-dimensional hydrodynamic model emulator. The proposed "neuroemulator" retains the dynamic nature of the process-based model utilizing a set of artificial neural networks. The underlying hydrodynamic model is routinely used for analysis and management of the northern reach of the San Francisco Bay-Delta estuary, a large complex region of strategic importance for water supply and ecosystem services on the Pacific coast of California, USA. The reduced computational expense of the emulator affords opportunities for direct use, as well as embedded use within other modelling frameworks such as those developed for reservoir operations and socio-hydrology.</description><subject>Artificial neural networks</subject><subject>Brackishwater environment</subject><subject>Case studies</subject><subject>Ecosystem services</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Estuarine environments</subject><subject>Estuarine water</subject><subject>Evaluation</subject><subject>Hydrodynamic models</subject><subject>Hydrodynamics</subject><subject>Hydrology</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>System effectiveness</subject><subject>Water quality</subject><subject>Water supply</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo1kMtqwzAQRUVpoW7aTygYunY6M3rYWpaQPiDQTbsWsqVQB9tKJXuRv69N0s2dzeHO5TD2iLBGqOAZSJFSqlwTYLVGIUpEumIZoYSCCy6vWbYwxQLdsruUDgBcaMUzprf91NmxDUMe9rnNjzE0PqWitsm73KdxsrEdfP5zcjG402D7tsn74Hx3z272tkv-4XJX7Pt1-7V5L3afbx-bl13RUIVjobRoONkGSmtLIpxT6qqyQKhU7ZwgcNJJwcvaWY6udrWYQyvvJHlyfMWezr3ztN9pXmQOYYrD_NIQkKw0oIaZkmeqiSGl6PfmGNvexpNBMIsl82_JLJbMxRL_A7BaWcE</recordid><startdate>20180404</startdate><enddate>20180404</enddate><creator>Chen, Limin</creator><creator>Roy, Sujoy B.</creator><creator>Hutton, Paul H.</creator><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2143-7124</orcidid></search><sort><creationdate>20180404</creationdate><title>Emulation of a process-based estuarine hydrodynamic model</title><author>Chen, Limin ; Roy, Sujoy B. ; Hutton, Paul H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-694c32ac07aa7221aa75988a02166bdd420d5d5437bda31dbdb4dbd96ed52e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Brackishwater environment</topic><topic>Case studies</topic><topic>Ecosystem services</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Estuarine environments</topic><topic>Estuarine water</topic><topic>Evaluation</topic><topic>Hydrodynamic models</topic><topic>Hydrodynamics</topic><topic>Hydrology</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>System effectiveness</topic><topic>Water quality</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Limin</creatorcontrib><creatorcontrib>Roy, Sujoy B.</creatorcontrib><creatorcontrib>Hutton, Paul H.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Limin</au><au>Roy, Sujoy B.</au><au>Hutton, Paul H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emulation of a process-based estuarine hydrodynamic model</atitle><jtitle>Hydrological sciences journal</jtitle><date>2018-04-04</date><risdate>2018</risdate><volume>63</volume><issue>5</issue><spage>783</spage><epage>802</epage><pages>783-802</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>Emulation modelling can be an effective alternative to traditional mechanistic approaches for complex environmental systems and, if carefully conceived, can offer significantly reduced run times and user expertise requirements. We present a case study of dynamic emulation for the domain of estuarine water quality modelling, by reporting the development and evaluation of a one-dimensional hydrodynamic model emulator. The proposed "neuroemulator" retains the dynamic nature of the process-based model utilizing a set of artificial neural networks. The underlying hydrodynamic model is routinely used for analysis and management of the northern reach of the San Francisco Bay-Delta estuary, a large complex region of strategic importance for water supply and ecosystem services on the Pacific coast of California, USA. The reduced computational expense of the emulator affords opportunities for direct use, as well as embedded use within other modelling frameworks such as those developed for reservoir operations and socio-hydrology.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/02626667.2018.1447112</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2143-7124</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0262-6667
ispartof Hydrological sciences journal, 2018-04, Vol.63 (5), p.783-802
issn 0262-6667
2150-3435
language eng
recordid cdi_proquest_journals_2025890190
source Taylor & Francis:Master (3349 titles); Alma/SFX Local Collection
subjects Artificial neural networks
Brackishwater environment
Case studies
Ecosystem services
Estuaries
Estuarine dynamics
Estuarine environments
Estuarine water
Evaluation
Hydrodynamic models
Hydrodynamics
Hydrology
Modelling
Neural networks
System effectiveness
Water quality
Water supply
title Emulation of a process-based estuarine hydrodynamic model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emulation%20of%20a%20process-based%20estuarine%20hydrodynamic%20model&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Chen,%20Limin&rft.date=2018-04-04&rft.volume=63&rft.issue=5&rft.spage=783&rft.epage=802&rft.pages=783-802&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2018.1447112&rft_dat=%3Cproquest_cross%3E2025890190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025890190&rft_id=info:pmid/&rfr_iscdi=true