GROWTH EXPONENT FOR LOOP-ERASED RANDOM WALK IN THREE DIMENSIONS
Let Mn be the number of steps of the loop-erasure of a simple random walk on ℤ³ run until its first exit from a ball of radius n. In the paper, we will show the existence of the growth exponent, that is, we show that there exists β > 0 such that lim lim n → ∞ log E ( M n ) log n = β .
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2018-03, Vol.46 (2), p.687-774 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Mn
be the number of steps of the loop-erasure of a simple random walk on ℤ³ run until its first exit from a ball of radius n. In the paper, we will show the existence of the growth exponent, that is, we show that there exists β > 0 such that lim
lim
n
→
∞
log
E
(
M
n
)
log
n
=
β
. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/16-aop1165 |