Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments
Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartp...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2018-01, Vol.2018 (2018), p.1-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2018 |
creator | Khan, Md Abdullah Al Hafiz Hossain, H. M. Sajjad Roy, Nirmalya |
description | Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in the presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average. |
doi_str_mv | 10.1155/2018/4570182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2025310533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025310533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c4bd946d50f6ae97436d39a5a75b821a7acffd8bde985f09190b956197230bc53</originalsourceid><addsrcrecordid>eNqF0N9LwzAQB_AgCs7pm89S8FGrl6bXNI865w8YDJni3kqaJpixpTXplP33Zmzgo093cB_uji8h5xRuKEW8zYCWtznyWLIDMqAlx1QAzg9jjzxPgfL5MTkJYQFQAEM-IK8fWnpZL3Uy0y60Pr2XQTfJpFWyt61LZ51W1liVTJVad9KpTfKge622w8S6ZLaSvk_G7tv61q2068MpOTJyGfTZvg7J--P4bfScTqZPL6O7SapYAX2q8roRedEgmEJqwXNWNExIlBzrMqOSS2VMU9aNFiUaEFRALbCggmcMaoVsSC53ezvffq116KtFu_YunqwyyJBRQMaiut4p5dsQvDZV5238eVNRqLahVdvQqn1okV_t-Kd1jfyx_-mLndbRaCP_dAZ5Ge__AijkdX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025310533</pqid></control><display><type>article</type><title>Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Khan, Md Abdullah Al Hafiz ; Hossain, H. M. Sajjad ; Roy, Nirmalya</creator><contributor>Chen, Yuh-Shyan ; Yuh-Shyan Chen</contributor><creatorcontrib>Khan, Md Abdullah Al Hafiz ; Hossain, H. M. Sajjad ; Roy, Nirmalya ; Chen, Yuh-Shyan ; Yuh-Shyan Chen</creatorcontrib><description>Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in the presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2018/4570182</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accelerometers ; Air conditioners ; Air conditioning ; Counting ; Data integration ; Error detection ; Fingerprinting ; Machine learning ; Multisensor fusion ; Regeneration ; Sensors ; Smartphones ; Ventilation ; Wearable technology</subject><ispartof>Mobile information systems, 2018-01, Vol.2018 (2018), p.1-21</ispartof><rights>Copyright © 2018 Md Abdullah Al Hafiz Khan et al.</rights><rights>Copyright © 2018 Md Abdullah Al Hafiz Khan et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-c4bd946d50f6ae97436d39a5a75b821a7acffd8bde985f09190b956197230bc53</citedby><cites>FETCH-LOGICAL-c360t-c4bd946d50f6ae97436d39a5a75b821a7acffd8bde985f09190b956197230bc53</cites><orcidid>0000-0003-4827-3393 ; 0000-0001-9847-6493 ; 0000-0002-6180-1501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Chen, Yuh-Shyan</contributor><contributor>Yuh-Shyan Chen</contributor><creatorcontrib>Khan, Md Abdullah Al Hafiz</creatorcontrib><creatorcontrib>Hossain, H. M. Sajjad</creatorcontrib><creatorcontrib>Roy, Nirmalya</creatorcontrib><title>Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments</title><title>Mobile information systems</title><description>Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in the presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average.</description><subject>Accelerometers</subject><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Counting</subject><subject>Data integration</subject><subject>Error detection</subject><subject>Fingerprinting</subject><subject>Machine learning</subject><subject>Multisensor fusion</subject><subject>Regeneration</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>Ventilation</subject><subject>Wearable technology</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0N9LwzAQB_AgCs7pm89S8FGrl6bXNI865w8YDJni3kqaJpixpTXplP33Zmzgo093cB_uji8h5xRuKEW8zYCWtznyWLIDMqAlx1QAzg9jjzxPgfL5MTkJYQFQAEM-IK8fWnpZL3Uy0y60Pr2XQTfJpFWyt61LZ51W1liVTJVad9KpTfKge622w8S6ZLaSvk_G7tv61q2068MpOTJyGfTZvg7J--P4bfScTqZPL6O7SapYAX2q8roRedEgmEJqwXNWNExIlBzrMqOSS2VMU9aNFiUaEFRALbCggmcMaoVsSC53ezvffq116KtFu_YunqwyyJBRQMaiut4p5dsQvDZV5238eVNRqLahVdvQqn1okV_t-Kd1jfyx_-mLndbRaCP_dAZ5Ge__AijkdX8</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Khan, Md Abdullah Al Hafiz</creator><creator>Hossain, H. M. Sajjad</creator><creator>Roy, Nirmalya</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4827-3393</orcidid><orcidid>https://orcid.org/0000-0001-9847-6493</orcidid><orcidid>https://orcid.org/0000-0002-6180-1501</orcidid></search><sort><creationdate>20180101</creationdate><title>Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments</title><author>Khan, Md Abdullah Al Hafiz ; Hossain, H. M. Sajjad ; Roy, Nirmalya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c4bd946d50f6ae97436d39a5a75b821a7acffd8bde985f09190b956197230bc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerometers</topic><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Counting</topic><topic>Data integration</topic><topic>Error detection</topic><topic>Fingerprinting</topic><topic>Machine learning</topic><topic>Multisensor fusion</topic><topic>Regeneration</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>Ventilation</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Md Abdullah Al Hafiz</creatorcontrib><creatorcontrib>Hossain, H. M. Sajjad</creatorcontrib><creatorcontrib>Roy, Nirmalya</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Md Abdullah Al Hafiz</au><au>Hossain, H. M. Sajjad</au><au>Roy, Nirmalya</au><au>Chen, Yuh-Shyan</au><au>Yuh-Shyan Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments</atitle><jtitle>Mobile information systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in the presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4570182</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4827-3393</orcidid><orcidid>https://orcid.org/0000-0001-9847-6493</orcidid><orcidid>https://orcid.org/0000-0002-6180-1501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2018-01, Vol.2018 (2018), p.1-21 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2025310533 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accelerometers Air conditioners Air conditioning Counting Data integration Error detection Fingerprinting Machine learning Multisensor fusion Regeneration Sensors Smartphones Ventilation Wearable technology |
title | Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wearable%20Sensor-Based%20Location-Specific%20Occupancy%20Detection%20in%20Smart%20Environments&rft.jtitle=Mobile%20information%20systems&rft.au=Khan,%20Md%20Abdullah%20Al%20Hafiz&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2018/4570182&rft_dat=%3Cproquest_cross%3E2025310533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025310533&rft_id=info:pmid/&rfr_iscdi=true |