Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments

Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2018-01, Vol.2018 (2018), p.1-21
Hauptverfasser: Khan, Md Abdullah Al Hafiz, Hossain, H. M. Sajjad, Roy, Nirmalya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 2018
container_start_page 1
container_title Mobile information systems
container_volume 2018
creator Khan, Md Abdullah Al Hafiz
Hossain, H. M. Sajjad
Roy, Nirmalya
description Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in the presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average.
doi_str_mv 10.1155/2018/4570182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2025310533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025310533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c4bd946d50f6ae97436d39a5a75b821a7acffd8bde985f09190b956197230bc53</originalsourceid><addsrcrecordid>eNqF0N9LwzAQB_AgCs7pm89S8FGrl6bXNI865w8YDJni3kqaJpixpTXplP33Zmzgo093cB_uji8h5xRuKEW8zYCWtznyWLIDMqAlx1QAzg9jjzxPgfL5MTkJYQFQAEM-IK8fWnpZL3Uy0y60Pr2XQTfJpFWyt61LZ51W1liVTJVad9KpTfKge622w8S6ZLaSvk_G7tv61q2068MpOTJyGfTZvg7J--P4bfScTqZPL6O7SapYAX2q8roRedEgmEJqwXNWNExIlBzrMqOSS2VMU9aNFiUaEFRALbCggmcMaoVsSC53ezvffq116KtFu_YunqwyyJBRQMaiut4p5dsQvDZV5238eVNRqLahVdvQqn1okV_t-Kd1jfyx_-mLndbRaCP_dAZ5Ge__AijkdX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025310533</pqid></control><display><type>article</type><title>Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Khan, Md Abdullah Al Hafiz ; Hossain, H. M. Sajjad ; Roy, Nirmalya</creator><contributor>Chen, Yuh-Shyan ; Yuh-Shyan Chen</contributor><creatorcontrib>Khan, Md Abdullah Al Hafiz ; Hossain, H. M. Sajjad ; Roy, Nirmalya ; Chen, Yuh-Shyan ; Yuh-Shyan Chen</creatorcontrib><description>Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in the presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2018/4570182</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accelerometers ; Air conditioners ; Air conditioning ; Counting ; Data integration ; Error detection ; Fingerprinting ; Machine learning ; Multisensor fusion ; Regeneration ; Sensors ; Smartphones ; Ventilation ; Wearable technology</subject><ispartof>Mobile information systems, 2018-01, Vol.2018 (2018), p.1-21</ispartof><rights>Copyright © 2018 Md Abdullah Al Hafiz Khan et al.</rights><rights>Copyright © 2018 Md Abdullah Al Hafiz Khan et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-c4bd946d50f6ae97436d39a5a75b821a7acffd8bde985f09190b956197230bc53</citedby><cites>FETCH-LOGICAL-c360t-c4bd946d50f6ae97436d39a5a75b821a7acffd8bde985f09190b956197230bc53</cites><orcidid>0000-0003-4827-3393 ; 0000-0001-9847-6493 ; 0000-0002-6180-1501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Chen, Yuh-Shyan</contributor><contributor>Yuh-Shyan Chen</contributor><creatorcontrib>Khan, Md Abdullah Al Hafiz</creatorcontrib><creatorcontrib>Hossain, H. M. Sajjad</creatorcontrib><creatorcontrib>Roy, Nirmalya</creatorcontrib><title>Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments</title><title>Mobile information systems</title><description>Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in the presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average.</description><subject>Accelerometers</subject><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Counting</subject><subject>Data integration</subject><subject>Error detection</subject><subject>Fingerprinting</subject><subject>Machine learning</subject><subject>Multisensor fusion</subject><subject>Regeneration</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>Ventilation</subject><subject>Wearable technology</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0N9LwzAQB_AgCs7pm89S8FGrl6bXNI865w8YDJni3kqaJpixpTXplP33Zmzgo093cB_uji8h5xRuKEW8zYCWtznyWLIDMqAlx1QAzg9jjzxPgfL5MTkJYQFQAEM-IK8fWnpZL3Uy0y60Pr2XQTfJpFWyt61LZ51W1liVTJVad9KpTfKge622w8S6ZLaSvk_G7tv61q2068MpOTJyGfTZvg7J--P4bfScTqZPL6O7SapYAX2q8roRedEgmEJqwXNWNExIlBzrMqOSS2VMU9aNFiUaEFRALbCggmcMaoVsSC53ezvffq116KtFu_YunqwyyJBRQMaiut4p5dsQvDZV5238eVNRqLahVdvQqn1okV_t-Kd1jfyx_-mLndbRaCP_dAZ5Ge__AijkdX8</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Khan, Md Abdullah Al Hafiz</creator><creator>Hossain, H. M. Sajjad</creator><creator>Roy, Nirmalya</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4827-3393</orcidid><orcidid>https://orcid.org/0000-0001-9847-6493</orcidid><orcidid>https://orcid.org/0000-0002-6180-1501</orcidid></search><sort><creationdate>20180101</creationdate><title>Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments</title><author>Khan, Md Abdullah Al Hafiz ; Hossain, H. M. Sajjad ; Roy, Nirmalya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c4bd946d50f6ae97436d39a5a75b821a7acffd8bde985f09190b956197230bc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerometers</topic><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Counting</topic><topic>Data integration</topic><topic>Error detection</topic><topic>Fingerprinting</topic><topic>Machine learning</topic><topic>Multisensor fusion</topic><topic>Regeneration</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>Ventilation</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Md Abdullah Al Hafiz</creatorcontrib><creatorcontrib>Hossain, H. M. Sajjad</creatorcontrib><creatorcontrib>Roy, Nirmalya</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Md Abdullah Al Hafiz</au><au>Hossain, H. M. Sajjad</au><au>Roy, Nirmalya</au><au>Chen, Yuh-Shyan</au><au>Yuh-Shyan Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments</atitle><jtitle>Mobile information systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in the presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4570182</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4827-3393</orcidid><orcidid>https://orcid.org/0000-0001-9847-6493</orcidid><orcidid>https://orcid.org/0000-0002-6180-1501</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2018-01, Vol.2018 (2018), p.1-21
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2025310533
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accelerometers
Air conditioners
Air conditioning
Counting
Data integration
Error detection
Fingerprinting
Machine learning
Multisensor fusion
Regeneration
Sensors
Smartphones
Ventilation
Wearable technology
title Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wearable%20Sensor-Based%20Location-Specific%20Occupancy%20Detection%20in%20Smart%20Environments&rft.jtitle=Mobile%20information%20systems&rft.au=Khan,%20Md%20Abdullah%20Al%20Hafiz&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2018/4570182&rft_dat=%3Cproquest_cross%3E2025310533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025310533&rft_id=info:pmid/&rfr_iscdi=true