An Iterative Scheme to Compute Size Probabilities in Random Graphs and Branching Processes

We deal with a functional equation that plays an important role in random graphs and in branching processes. In branching processes, the functional equation relates offspring probabilities to population size probabilities, while in random graph it relates degree probabilities to small component size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2018-01, Vol.2018 (2018), p.1-6
1. Verfasser: Serafini, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2018
container_start_page 1
container_title Scientific programming
container_volume 2018
creator Serafini, P.
description We deal with a functional equation that plays an important role in random graphs and in branching processes. In branching processes, the functional equation relates offspring probabilities to population size probabilities, while in random graph it relates degree probabilities to small component size probabilities. We present an iterative scheme that allows computing the size probabilities numerically. It is also theoretically possible to invert the iteration, although this inverse iteration is numerically unstable.
doi_str_mv 10.1155/2018/3791075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2025305833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025305833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-d8afa9095d5cf7a1e34f2dae73351fe7907142b21ee64a314e6dded431014b2f3</originalsourceid><addsrcrecordid>eNqF0EtLAzEQB_BFFKzVm2cJeNS1mTya3WMtWgsFxQeIlyW7O7Ep3YfJVtFPb8oWPHrKZPgxw_yj6BToFYCUI0YhGXGVAlVyLxpAomScQvq6H2oqkzhlQhxGR96vaJBA6SB6m9Rk3qHTnf1E8lQssULSNWTaVO2mCx37g-TBNbnO7dp2Fj2xNXnUddlUZOZ0u_QkfMi103WxtPX7FhfoPfrj6MDotceT3TuMXm5vnqd38eJ-Np9OFnHBQXVxmWijU5rKUhZGaUAuDCs1Ks4lGFQpVSBYzgBxLDQHgeOyxFJwoCByZvgwOu_ntq752KDvslWzcXVYmTHKJA-Xcx7UZa8K13jv0GSts5V23xnQbJtetk0v26UX-EXPw02l_rL_6bNeYzBo9J9mIMYJ5b9nJnhe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025305833</pqid></control><display><type>article</type><title>An Iterative Scheme to Compute Size Probabilities in Random Graphs and Branching Processes</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Serafini, P.</creator><contributor>Riguzzi, Fabrizio ; Fabrizio Riguzzi</contributor><creatorcontrib>Serafini, P. ; Riguzzi, Fabrizio ; Fabrizio Riguzzi</creatorcontrib><description>We deal with a functional equation that plays an important role in random graphs and in branching processes. In branching processes, the functional equation relates offspring probabilities to population size probabilities, while in random graph it relates degree probabilities to small component size probabilities. We present an iterative scheme that allows computing the size probabilities numerically. It is also theoretically possible to invert the iteration, although this inverse iteration is numerically unstable.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2018/3791075</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Functional equations ; Graphs ; Iterative methods ; Random variables</subject><ispartof>Scientific programming, 2018-01, Vol.2018 (2018), p.1-6</ispartof><rights>Copyright © 2018 Paolo Serafini.</rights><rights>Copyright © 2018 Paolo Serafini.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-d8afa9095d5cf7a1e34f2dae73351fe7907142b21ee64a314e6dded431014b2f3</cites><orcidid>0000-0002-0094-6520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Riguzzi, Fabrizio</contributor><contributor>Fabrizio Riguzzi</contributor><creatorcontrib>Serafini, P.</creatorcontrib><title>An Iterative Scheme to Compute Size Probabilities in Random Graphs and Branching Processes</title><title>Scientific programming</title><description>We deal with a functional equation that plays an important role in random graphs and in branching processes. In branching processes, the functional equation relates offspring probabilities to population size probabilities, while in random graph it relates degree probabilities to small component size probabilities. We present an iterative scheme that allows computing the size probabilities numerically. It is also theoretically possible to invert the iteration, although this inverse iteration is numerically unstable.</description><subject>Functional equations</subject><subject>Graphs</subject><subject>Iterative methods</subject><subject>Random variables</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0EtLAzEQB_BFFKzVm2cJeNS1mTya3WMtWgsFxQeIlyW7O7Ep3YfJVtFPb8oWPHrKZPgxw_yj6BToFYCUI0YhGXGVAlVyLxpAomScQvq6H2oqkzhlQhxGR96vaJBA6SB6m9Rk3qHTnf1E8lQssULSNWTaVO2mCx37g-TBNbnO7dp2Fj2xNXnUddlUZOZ0u_QkfMi103WxtPX7FhfoPfrj6MDotceT3TuMXm5vnqd38eJ-Np9OFnHBQXVxmWijU5rKUhZGaUAuDCs1Ks4lGFQpVSBYzgBxLDQHgeOyxFJwoCByZvgwOu_ntq752KDvslWzcXVYmTHKJA-Xcx7UZa8K13jv0GSts5V23xnQbJtetk0v26UX-EXPw02l_rL_6bNeYzBo9J9mIMYJ5b9nJnhe</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Serafini, P.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0094-6520</orcidid></search><sort><creationdate>20180101</creationdate><title>An Iterative Scheme to Compute Size Probabilities in Random Graphs and Branching Processes</title><author>Serafini, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-d8afa9095d5cf7a1e34f2dae73351fe7907142b21ee64a314e6dded431014b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Functional equations</topic><topic>Graphs</topic><topic>Iterative methods</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serafini, P.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serafini, P.</au><au>Riguzzi, Fabrizio</au><au>Fabrizio Riguzzi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Iterative Scheme to Compute Size Probabilities in Random Graphs and Branching Processes</atitle><jtitle>Scientific programming</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>We deal with a functional equation that plays an important role in random graphs and in branching processes. In branching processes, the functional equation relates offspring probabilities to population size probabilities, while in random graph it relates degree probabilities to small component size probabilities. We present an iterative scheme that allows computing the size probabilities numerically. It is also theoretically possible to invert the iteration, although this inverse iteration is numerically unstable.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/3791075</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0094-6520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2018-01, Vol.2018 (2018), p.1-6
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2025305833
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Functional equations
Graphs
Iterative methods
Random variables
title An Iterative Scheme to Compute Size Probabilities in Random Graphs and Branching Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Iterative%20Scheme%20to%20Compute%20Size%20Probabilities%20in%20Random%20Graphs%20and%20Branching%20Processes&rft.jtitle=Scientific%20programming&rft.au=Serafini,%20P.&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2018/3791075&rft_dat=%3Cproquest_cross%3E2025305833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025305833&rft_id=info:pmid/&rfr_iscdi=true