Dynamic pricing and replenishment: Optimality, bounds, and asymptotics
In many applications, managers face the problem of replenishing and selling products during a finite time horizon. We investigate the problem of making dynamic and joint decisions on product replenishment and selling in order to improve profit. We consider a backlog scenario in which penalty cost (r...
Gespeichert in:
Veröffentlicht in: | Naval research logistics 2018-02, Vol.65 (1), p.3-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many applications, managers face the problem of replenishing and selling products during a finite time horizon. We investigate the problem of making dynamic and joint decisions on product replenishment and selling in order to improve profit. We consider a backlog scenario in which penalty cost (resulting from fulfillment delay) and accommodation cost (resulting from shortage at the end of the selling horizon) are incurred. Based on continuous‐time and discrete‐state dynamic programming, we study the optimal joint decisions and characterize their structural properties. We establish an upper bound for the optimal expected profit and develop a fluid policy by resorting to the deterministic version of the problem (ie, the fluid problem). The fluid policy is shown to be asymptotically optimal for the original stochastic problem when the problem size is sufficiently large. The static nature of the fluid policy and its lack of flexibility in matching supply with demand motivate us to develop a “target‐inventory” heuristic, which is shown, numerically, to be a significant improvement over the fluid policy. Scenarios with discrete feasible sets and lost‐sales are also discussed in this article. |
---|---|
ISSN: | 0894-069X 1520-6750 |
DOI: | 10.1002/nav.21786 |