Reconstruction of coupling architecture of neural field networks from vector time series

•A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size. We propose a method of reconstruction of the network coupling matri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2018-04, Vol.57, p.342-351
Hauptverfasser: Sysoev, Ilya V., Ponomarenko, Vladimir I., Pikovsky, Arkady
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue
container_start_page 342
container_title Communications in nonlinear science & numerical simulation
container_volume 57
creator Sysoev, Ilya V.
Ponomarenko, Vladimir I.
Pikovsky, Arkady
description •A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size. We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.
doi_str_mv 10.1016/j.cnsns.2017.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024800844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S100757041730360X</els_id><sourcerecordid>2024800844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-bf189de2c622be104538d7a08a500ed41e8e8f67d081b2b171c6be77d5ecb5ac3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoLvAQ8t07StMkePMjiFywIouAttMlUU3ebNUlX_PemrmdPM_PmvRney7JzCgUFWl_2hR7CEAoGVCSkAKgPshmVQuaCCX6YegCRVwL4cXYSQg9Jtaj4LHt9Qu2GEP2oo3UDcR3Rbtyu7fBGGq_fbUQdR4_TYsDRN2vSWVybNMQv5z8C6bzbkF1iOU-i3SAJ6C2G0-yoa9YBz_7qPHu5vXle3uerx7uH5fUq12VJY952VC4MMl0z1iIFXpXSiAZkUwGg4RQlyq4WBiRtWUsF1XWLQpgKdVs1upxnF_u7W-8-RwxR9W70Q3qpGDAuASTniVXuWdq7EDx2auvtpvHfioKaIlS9-o1QTRFOYIowqa72KkwGdha9CtrioNFYnwwr4-y_-h94cHzx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024800844</pqid></control><display><type>article</type><title>Reconstruction of coupling architecture of neural field networks from vector time series</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sysoev, Ilya V. ; Ponomarenko, Vladimir I. ; Pikovsky, Arkady</creator><creatorcontrib>Sysoev, Ilya V. ; Ponomarenko, Vladimir I. ; Pikovsky, Arkady</creatorcontrib><description>•A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size. We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2017.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Coupling ; Dynamical systems ; Network reconstruction ; Neurooscillators ; Oscillators ; Reconstruction ; Time delay ; Time series</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2018-04, Vol.57, p.342-351</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-bf189de2c622be104538d7a08a500ed41e8e8f67d081b2b171c6be77d5ecb5ac3</citedby><cites>FETCH-LOGICAL-c331t-bf189de2c622be104538d7a08a500ed41e8e8f67d081b2b171c6be77d5ecb5ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2017.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sysoev, Ilya V.</creatorcontrib><creatorcontrib>Ponomarenko, Vladimir I.</creatorcontrib><creatorcontrib>Pikovsky, Arkady</creatorcontrib><title>Reconstruction of coupling architecture of neural field networks from vector time series</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size. We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.</description><subject>Coupling</subject><subject>Dynamical systems</subject><subject>Network reconstruction</subject><subject>Neurooscillators</subject><subject>Oscillators</subject><subject>Reconstruction</subject><subject>Time delay</subject><subject>Time series</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQLaLguvoLvAQ8t07StMkePMjiFywIouAttMlUU3ebNUlX_PemrmdPM_PmvRney7JzCgUFWl_2hR7CEAoGVCSkAKgPshmVQuaCCX6YegCRVwL4cXYSQg9Jtaj4LHt9Qu2GEP2oo3UDcR3Rbtyu7fBGGq_fbUQdR4_TYsDRN2vSWVybNMQv5z8C6bzbkF1iOU-i3SAJ6C2G0-yoa9YBz_7qPHu5vXle3uerx7uH5fUq12VJY952VC4MMl0z1iIFXpXSiAZkUwGg4RQlyq4WBiRtWUsF1XWLQpgKdVs1upxnF_u7W-8-RwxR9W70Q3qpGDAuASTniVXuWdq7EDx2auvtpvHfioKaIlS9-o1QTRFOYIowqa72KkwGdha9CtrioNFYnwwr4-y_-h94cHzx</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Sysoev, Ilya V.</creator><creator>Ponomarenko, Vladimir I.</creator><creator>Pikovsky, Arkady</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201804</creationdate><title>Reconstruction of coupling architecture of neural field networks from vector time series</title><author>Sysoev, Ilya V. ; Ponomarenko, Vladimir I. ; Pikovsky, Arkady</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-bf189de2c622be104538d7a08a500ed41e8e8f67d081b2b171c6be77d5ecb5ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coupling</topic><topic>Dynamical systems</topic><topic>Network reconstruction</topic><topic>Neurooscillators</topic><topic>Oscillators</topic><topic>Reconstruction</topic><topic>Time delay</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sysoev, Ilya V.</creatorcontrib><creatorcontrib>Ponomarenko, Vladimir I.</creatorcontrib><creatorcontrib>Pikovsky, Arkady</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sysoev, Ilya V.</au><au>Ponomarenko, Vladimir I.</au><au>Pikovsky, Arkady</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of coupling architecture of neural field networks from vector time series</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2018-04</date><risdate>2018</risdate><volume>57</volume><spage>342</spage><epage>351</epage><pages>342-351</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size. We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2017.10.006</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2018-04, Vol.57, p.342-351
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2024800844
source Access via ScienceDirect (Elsevier)
subjects Coupling
Dynamical systems
Network reconstruction
Neurooscillators
Oscillators
Reconstruction
Time delay
Time series
title Reconstruction of coupling architecture of neural field networks from vector time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20coupling%20architecture%20of%20neural%20field%20networks%20from%20vector%20time%20series&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Sysoev,%20Ilya%20V.&rft.date=2018-04&rft.volume=57&rft.spage=342&rft.epage=351&rft.pages=342-351&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2017.10.006&rft_dat=%3Cproquest_cross%3E2024800844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024800844&rft_id=info:pmid/&rft_els_id=S100757041730360X&rfr_iscdi=true