Reconstruction of coupling architecture of neural field networks from vector time series
•A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size. We propose a method of reconstruction of the network coupling matri...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2018-04, Vol.57, p.342-351 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | |
container_start_page | 342 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 57 |
creator | Sysoev, Ilya V. Ponomarenko, Vladimir I. Pikovsky, Arkady |
description | •A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size.
We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques. |
doi_str_mv | 10.1016/j.cnsns.2017.10.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024800844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S100757041730360X</els_id><sourcerecordid>2024800844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-bf189de2c622be104538d7a08a500ed41e8e8f67d081b2b171c6be77d5ecb5ac3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoLvAQ8t07StMkePMjiFywIouAttMlUU3ebNUlX_PemrmdPM_PmvRney7JzCgUFWl_2hR7CEAoGVCSkAKgPshmVQuaCCX6YegCRVwL4cXYSQg9Jtaj4LHt9Qu2GEP2oo3UDcR3Rbtyu7fBGGq_fbUQdR4_TYsDRN2vSWVybNMQv5z8C6bzbkF1iOU-i3SAJ6C2G0-yoa9YBz_7qPHu5vXle3uerx7uH5fUq12VJY952VC4MMl0z1iIFXpXSiAZkUwGg4RQlyq4WBiRtWUsF1XWLQpgKdVs1upxnF_u7W-8-RwxR9W70Q3qpGDAuASTniVXuWdq7EDx2auvtpvHfioKaIlS9-o1QTRFOYIowqa72KkwGdha9CtrioNFYnwwr4-y_-h94cHzx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024800844</pqid></control><display><type>article</type><title>Reconstruction of coupling architecture of neural field networks from vector time series</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sysoev, Ilya V. ; Ponomarenko, Vladimir I. ; Pikovsky, Arkady</creator><creatorcontrib>Sysoev, Ilya V. ; Ponomarenko, Vladimir I. ; Pikovsky, Arkady</creatorcontrib><description>•A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size.
We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2017.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Coupling ; Dynamical systems ; Network reconstruction ; Neurooscillators ; Oscillators ; Reconstruction ; Time delay ; Time series</subject><ispartof>Communications in nonlinear science & numerical simulation, 2018-04, Vol.57, p.342-351</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-bf189de2c622be104538d7a08a500ed41e8e8f67d081b2b171c6be77d5ecb5ac3</citedby><cites>FETCH-LOGICAL-c331t-bf189de2c622be104538d7a08a500ed41e8e8f67d081b2b171c6be77d5ecb5ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2017.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sysoev, Ilya V.</creatorcontrib><creatorcontrib>Ponomarenko, Vladimir I.</creatorcontrib><creatorcontrib>Pikovsky, Arkady</creatorcontrib><title>Reconstruction of coupling architecture of neural field networks from vector time series</title><title>Communications in nonlinear science & numerical simulation</title><description>•A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size.
We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.</description><subject>Coupling</subject><subject>Dynamical systems</subject><subject>Network reconstruction</subject><subject>Neurooscillators</subject><subject>Oscillators</subject><subject>Reconstruction</subject><subject>Time delay</subject><subject>Time series</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQLaLguvoLvAQ8t07StMkePMjiFywIouAttMlUU3ebNUlX_PemrmdPM_PmvRney7JzCgUFWl_2hR7CEAoGVCSkAKgPshmVQuaCCX6YegCRVwL4cXYSQg9Jtaj4LHt9Qu2GEP2oo3UDcR3Rbtyu7fBGGq_fbUQdR4_TYsDRN2vSWVybNMQv5z8C6bzbkF1iOU-i3SAJ6C2G0-yoa9YBz_7qPHu5vXle3uerx7uH5fUq12VJY952VC4MMl0z1iIFXpXSiAZkUwGg4RQlyq4WBiRtWUsF1XWLQpgKdVs1upxnF_u7W-8-RwxR9W70Q3qpGDAuASTniVXuWdq7EDx2auvtpvHfioKaIlS9-o1QTRFOYIowqa72KkwGdha9CtrioNFYnwwr4-y_-h94cHzx</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Sysoev, Ilya V.</creator><creator>Ponomarenko, Vladimir I.</creator><creator>Pikovsky, Arkady</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201804</creationdate><title>Reconstruction of coupling architecture of neural field networks from vector time series</title><author>Sysoev, Ilya V. ; Ponomarenko, Vladimir I. ; Pikovsky, Arkady</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-bf189de2c622be104538d7a08a500ed41e8e8f67d081b2b171c6be77d5ecb5ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coupling</topic><topic>Dynamical systems</topic><topic>Network reconstruction</topic><topic>Neurooscillators</topic><topic>Oscillators</topic><topic>Reconstruction</topic><topic>Time delay</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sysoev, Ilya V.</creatorcontrib><creatorcontrib>Ponomarenko, Vladimir I.</creatorcontrib><creatorcontrib>Pikovsky, Arkady</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sysoev, Ilya V.</au><au>Ponomarenko, Vladimir I.</au><au>Pikovsky, Arkady</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of coupling architecture of neural field networks from vector time series</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2018-04</date><risdate>2018</risdate><volume>57</volume><spage>342</spage><epage>351</epage><pages>342-351</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•A new approach to reconstruct couplings in ensembles of oscillators from time series.•Delayed couplings and coupling delay times can be reconstructed.•The approach efficiency is demonstrated numerically for different ensemble size.
We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2017.10.006</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2018-04, Vol.57, p.342-351 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_journals_2024800844 |
source | Access via ScienceDirect (Elsevier) |
subjects | Coupling Dynamical systems Network reconstruction Neurooscillators Oscillators Reconstruction Time delay Time series |
title | Reconstruction of coupling architecture of neural field networks from vector time series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20coupling%20architecture%20of%20neural%20field%20networks%20from%20vector%20time%20series&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Sysoev,%20Ilya%20V.&rft.date=2018-04&rft.volume=57&rft.spage=342&rft.epage=351&rft.pages=342-351&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2017.10.006&rft_dat=%3Cproquest_cross%3E2024800844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024800844&rft_id=info:pmid/&rft_els_id=S100757041730360X&rfr_iscdi=true |