Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion

•A generalized Gronwall inequality is given on finite time domain.•Finite-time stability of discrete fractional delay systems is discussed.•New finite-time stability criterion is provided. This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2018-04, Vol.57, p.299-308
Hauptverfasser: Wu, Guo–Cheng, Baleanu, Dumitru, Zeng, Sheng–Da
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue
container_start_page 299
container_title Communications in nonlinear science & numerical simulation
container_volume 57
creator Wu, Guo–Cheng
Baleanu, Dumitru
Zeng, Sheng–Da
description •A generalized Gronwall inequality is given on finite time domain.•Finite-time stability of discrete fractional delay systems is discussed.•New finite-time stability criterion is provided. This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gronwall inequality is given on a finite time domain. A finite-time stability criterion is proposed for fractional differential equations. Then the idea is extended to the discrete fractional case. A linear fractional difference equation with constant delays is considered and finite-time stable conditions are provided. One example is numerically illustrated to support the theoretical result.
doi_str_mv 10.1016/j.cnsns.2017.09.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024800532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570417303222</els_id><sourcerecordid>2024800532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-2fcd608280f8c316d5c0520d69c2d988225d30b4d028f4d7211632f32eca96ad3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wEvA866TZD-yggcptgoFL3oOaT4kyzbbJqnSf2_aevDkaebwPi8zD0K3BEoCpLnvS-WjjyUF0pbQlQDkDE0Ib3nR0rY6zztAW9QtVJfoKsY-B5quriboc-68S6ZIbm1wTHLlBpf2eLRYu6iCSQbbIFVyo5cD1maQexz3MZl1fMCLMPpvOQzYebPdySMpvf7To0IuDxm-RhdWDtHc_M4p-pg_v89eiuXb4nX2tCwUYyQV1CrdAKccLFeMNLpWUFPQTaeo7jintNYMVpUGym2lW0pIw6hl1CjZNVKzKbo79W7CuN2ZmEQ_7kK-PQoKtOIANaM5xU4pFcYYg7FiE9xahr0gIA5GRS-ORsXBqIBOZGGZejxRJj_w5UwQUTnjldEuGJWEHt2__A9Qg4GJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024800532</pqid></control><display><type>article</type><title>Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Guo–Cheng ; Baleanu, Dumitru ; Zeng, Sheng–Da</creator><creatorcontrib>Wu, Guo–Cheng ; Baleanu, Dumitru ; Zeng, Sheng–Da</creatorcontrib><description>•A generalized Gronwall inequality is given on finite time domain.•Finite-time stability of discrete fractional delay systems is discussed.•New finite-time stability criterion is provided. This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gronwall inequality is given on a finite time domain. A finite-time stability criterion is proposed for fractional differential equations. Then the idea is extended to the discrete fractional case. A linear fractional difference equation with constant delays is considered and finite-time stable conditions are provided. One example is numerically illustrated to support the theoretical result.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2017.09.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Difference equations ; Differential equations ; Discrete element method ; Discrete time control ; Finite-time stability ; Fractional difference equations ; Image processing systems ; Mathematical analysis ; Stability criteria ; Time scale</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2018-04, Vol.57, p.299-308</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-2fcd608280f8c316d5c0520d69c2d988225d30b4d028f4d7211632f32eca96ad3</citedby><cites>FETCH-LOGICAL-c331t-2fcd608280f8c316d5c0520d69c2d988225d30b4d028f4d7211632f32eca96ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2017.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Wu, Guo–Cheng</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><creatorcontrib>Zeng, Sheng–Da</creatorcontrib><title>Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•A generalized Gronwall inequality is given on finite time domain.•Finite-time stability of discrete fractional delay systems is discussed.•New finite-time stability criterion is provided. This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gronwall inequality is given on a finite time domain. A finite-time stability criterion is proposed for fractional differential equations. Then the idea is extended to the discrete fractional case. A linear fractional difference equation with constant delays is considered and finite-time stable conditions are provided. One example is numerically illustrated to support the theoretical result.</description><subject>Difference equations</subject><subject>Differential equations</subject><subject>Discrete element method</subject><subject>Discrete time control</subject><subject>Finite-time stability</subject><subject>Fractional difference equations</subject><subject>Image processing systems</subject><subject>Mathematical analysis</subject><subject>Stability criteria</subject><subject>Time scale</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKu_wEvA866TZD-yggcptgoFL3oOaT4kyzbbJqnSf2_aevDkaebwPi8zD0K3BEoCpLnvS-WjjyUF0pbQlQDkDE0Ib3nR0rY6zztAW9QtVJfoKsY-B5quriboc-68S6ZIbm1wTHLlBpf2eLRYu6iCSQbbIFVyo5cD1maQexz3MZl1fMCLMPpvOQzYebPdySMpvf7To0IuDxm-RhdWDtHc_M4p-pg_v89eiuXb4nX2tCwUYyQV1CrdAKccLFeMNLpWUFPQTaeo7jintNYMVpUGym2lW0pIw6hl1CjZNVKzKbo79W7CuN2ZmEQ_7kK-PQoKtOIANaM5xU4pFcYYg7FiE9xahr0gIA5GRS-ORsXBqIBOZGGZejxRJj_w5UwQUTnjldEuGJWEHt2__A9Qg4GJ</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Wu, Guo–Cheng</creator><creator>Baleanu, Dumitru</creator><creator>Zeng, Sheng–Da</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201804</creationdate><title>Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion</title><author>Wu, Guo–Cheng ; Baleanu, Dumitru ; Zeng, Sheng–Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-2fcd608280f8c316d5c0520d69c2d988225d30b4d028f4d7211632f32eca96ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Difference equations</topic><topic>Differential equations</topic><topic>Discrete element method</topic><topic>Discrete time control</topic><topic>Finite-time stability</topic><topic>Fractional difference equations</topic><topic>Image processing systems</topic><topic>Mathematical analysis</topic><topic>Stability criteria</topic><topic>Time scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Guo–Cheng</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><creatorcontrib>Zeng, Sheng–Da</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Guo–Cheng</au><au>Baleanu, Dumitru</au><au>Zeng, Sheng–Da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2018-04</date><risdate>2018</risdate><volume>57</volume><spage>299</spage><epage>308</epage><pages>299-308</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•A generalized Gronwall inequality is given on finite time domain.•Finite-time stability of discrete fractional delay systems is discussed.•New finite-time stability criterion is provided. This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gronwall inequality is given on a finite time domain. A finite-time stability criterion is proposed for fractional differential equations. Then the idea is extended to the discrete fractional case. A linear fractional difference equation with constant delays is considered and finite-time stable conditions are provided. One example is numerically illustrated to support the theoretical result.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2017.09.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2018-04, Vol.57, p.299-308
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2024800532
source Elsevier ScienceDirect Journals
subjects Difference equations
Differential equations
Discrete element method
Discrete time control
Finite-time stability
Fractional difference equations
Image processing systems
Mathematical analysis
Stability criteria
Time scale
title Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-time%20stability%20of%20discrete%20fractional%20delay%20systems:%20Gronwall%20inequality%20and%20stability%20criterion&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Wu,%20Guo%E2%80%93Cheng&rft.date=2018-04&rft.volume=57&rft.spage=299&rft.epage=308&rft.pages=299-308&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2017.09.001&rft_dat=%3Cproquest_cross%3E2024800532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024800532&rft_id=info:pmid/&rft_els_id=S1007570417303222&rfr_iscdi=true