A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems
•A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given. In this pape...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2018-03, Vol.56, p.354-364 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | |
container_start_page | 354 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 56 |
creator | Zhang, Xiaolong Zou, Li Liang, Songxin Liu, Cheng |
description | •A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given.
In this paper, a new analytic approximation method with a convergence acceleration parameter c is first proposed. The parameter c is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of c. Furthermore, a numerical approach for finding the optimal value of the convergence acceleration parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves. |
doi_str_mv | 10.1016/j.cnsns.2017.08.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024800361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570417303143</els_id><sourcerecordid>2024800361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-5fae1676763cd4ea81e953ebf97a645c92724c438f9c478e6b456bb1d9e63c003</originalsourceid><addsrcrecordid>eNp9kE9PwyAchonRxDn9BF5IPLdCSws9eFgW_yVLvOiZUPrrRtNBha66by-zng0HODzvS94HoVtKUkpoed-l2gYb0oxQnhKRkqw4QwsquEh4xtl5fBPCk4ITdomuQuhITFUFWyC7wtZN0GNlVX8cjcZqGLz7Nns1GmfxHsada_CXGXdYYe3sBH4LVgNWWkMPfsYG5VVEwePWeRxcPxm7jc22NxaUx7Gy7mEfrtFFq_oAN3_3En08Pb6vX5LN2_PrerVJdJ7TMSlaBbTk8eS6YaAEharIoW4rrkpW6CrjGdMsF22lGRdQ1qwo65o2FcQEIfkS3c298ePPA4RRdu7g48QgM5IxEZGSRiqfKe1dCB5aOfg43B8lJfIkVnbyV6w8iZVEyCg2ph7mFMQBkwEvgzYnJY3xoEfZOPNv_gcMg4Ta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024800361</pqid></control><display><type>article</type><title>A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Xiaolong ; Zou, Li ; Liang, Songxin ; Liu, Cheng</creator><creatorcontrib>Zhang, Xiaolong ; Zou, Li ; Liang, Songxin ; Liu, Cheng</creatorcontrib><description>•A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given.
In this paper, a new analytic approximation method with a convergence acceleration parameter c is first proposed. The parameter c is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of c. Furthermore, a numerical approach for finding the optimal value of the convergence acceleration parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2017.08.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acceleration ; Adomian decomposition method ; Approximation ; Convergence ; Convergence acceleration parameter ; Differential equations ; Mathematical models ; Nonlinear differential equation ; Nonlinear equations ; Nonlinear systems ; Parameters ; Series solution</subject><ispartof>Communications in nonlinear science & numerical simulation, 2018-03, Vol.56, p.354-364</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-5fae1676763cd4ea81e953ebf97a645c92724c438f9c478e6b456bb1d9e63c003</citedby><cites>FETCH-LOGICAL-c331t-5fae1676763cd4ea81e953ebf97a645c92724c438f9c478e6b456bb1d9e63c003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570417303143$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaolong</creatorcontrib><creatorcontrib>Zou, Li</creatorcontrib><creatorcontrib>Liang, Songxin</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><title>A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems</title><title>Communications in nonlinear science & numerical simulation</title><description>•A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given.
In this paper, a new analytic approximation method with a convergence acceleration parameter c is first proposed. The parameter c is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of c. Furthermore, a numerical approach for finding the optimal value of the convergence acceleration parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves.</description><subject>Acceleration</subject><subject>Adomian decomposition method</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Convergence acceleration parameter</subject><subject>Differential equations</subject><subject>Mathematical models</subject><subject>Nonlinear differential equation</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Parameters</subject><subject>Series solution</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwyAchonRxDn9BF5IPLdCSws9eFgW_yVLvOiZUPrrRtNBha66by-zng0HODzvS94HoVtKUkpoed-l2gYb0oxQnhKRkqw4QwsquEh4xtl5fBPCk4ITdomuQuhITFUFWyC7wtZN0GNlVX8cjcZqGLz7Nns1GmfxHsada_CXGXdYYe3sBH4LVgNWWkMPfsYG5VVEwePWeRxcPxm7jc22NxaUx7Gy7mEfrtFFq_oAN3_3En08Pb6vX5LN2_PrerVJdJ7TMSlaBbTk8eS6YaAEharIoW4rrkpW6CrjGdMsF22lGRdQ1qwo65o2FcQEIfkS3c298ePPA4RRdu7g48QgM5IxEZGSRiqfKe1dCB5aOfg43B8lJfIkVnbyV6w8iZVEyCg2ph7mFMQBkwEvgzYnJY3xoEfZOPNv_gcMg4Ta</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Zhang, Xiaolong</creator><creator>Zou, Li</creator><creator>Liang, Songxin</creator><creator>Liu, Cheng</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201803</creationdate><title>A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems</title><author>Zhang, Xiaolong ; Zou, Li ; Liang, Songxin ; Liu, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-5fae1676763cd4ea81e953ebf97a645c92724c438f9c478e6b456bb1d9e63c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>Adomian decomposition method</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Convergence acceleration parameter</topic><topic>Differential equations</topic><topic>Mathematical models</topic><topic>Nonlinear differential equation</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Parameters</topic><topic>Series solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaolong</creatorcontrib><creatorcontrib>Zou, Li</creatorcontrib><creatorcontrib>Liang, Songxin</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaolong</au><au>Zou, Li</au><au>Liang, Songxin</au><au>Liu, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2018-03</date><risdate>2018</risdate><volume>56</volume><spage>354</spage><epage>364</epage><pages>354-364</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given.
In this paper, a new analytic approximation method with a convergence acceleration parameter c is first proposed. The parameter c is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of c. Furthermore, a numerical approach for finding the optimal value of the convergence acceleration parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2017.08.025</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2018-03, Vol.56, p.354-364 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_journals_2024800361 |
source | Elsevier ScienceDirect Journals |
subjects | Acceleration Adomian decomposition method Approximation Convergence Convergence acceleration parameter Differential equations Mathematical models Nonlinear differential equation Nonlinear equations Nonlinear systems Parameters Series solution |
title | A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20analytic%20approximation%20method%20with%20a%20convergence%20acceleration%20parameter%20for%20solving%20nonlinear%20problems&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Zhang,%20Xiaolong&rft.date=2018-03&rft.volume=56&rft.spage=354&rft.epage=364&rft.pages=354-364&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2017.08.025&rft_dat=%3Cproquest_cross%3E2024800361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024800361&rft_id=info:pmid/&rft_els_id=S1007570417303143&rfr_iscdi=true |