A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems

•A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given. In this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2018-03, Vol.56, p.354-364
Hauptverfasser: Zhang, Xiaolong, Zou, Li, Liang, Songxin, Liu, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue
container_start_page 354
container_title Communications in nonlinear science & numerical simulation
container_volume 56
creator Zhang, Xiaolong
Zou, Li
Liang, Songxin
Liu, Cheng
description •A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given. In this paper, a new analytic approximation method with a convergence acceleration parameter c is first proposed. The parameter c is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of c. Furthermore, a numerical approach for finding the optimal value of the convergence acceleration parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves.
doi_str_mv 10.1016/j.cnsns.2017.08.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024800361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570417303143</els_id><sourcerecordid>2024800361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-5fae1676763cd4ea81e953ebf97a645c92724c438f9c478e6b456bb1d9e63c003</originalsourceid><addsrcrecordid>eNp9kE9PwyAchonRxDn9BF5IPLdCSws9eFgW_yVLvOiZUPrrRtNBha66by-zng0HODzvS94HoVtKUkpoed-l2gYb0oxQnhKRkqw4QwsquEh4xtl5fBPCk4ITdomuQuhITFUFWyC7wtZN0GNlVX8cjcZqGLz7Nns1GmfxHsada_CXGXdYYe3sBH4LVgNWWkMPfsYG5VVEwePWeRxcPxm7jc22NxaUx7Gy7mEfrtFFq_oAN3_3En08Pb6vX5LN2_PrerVJdJ7TMSlaBbTk8eS6YaAEharIoW4rrkpW6CrjGdMsF22lGRdQ1qwo65o2FcQEIfkS3c298ePPA4RRdu7g48QgM5IxEZGSRiqfKe1dCB5aOfg43B8lJfIkVnbyV6w8iZVEyCg2ph7mFMQBkwEvgzYnJY3xoEfZOPNv_gcMg4Ta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024800361</pqid></control><display><type>article</type><title>A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Xiaolong ; Zou, Li ; Liang, Songxin ; Liu, Cheng</creator><creatorcontrib>Zhang, Xiaolong ; Zou, Li ; Liang, Songxin ; Liu, Cheng</creatorcontrib><description>•A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given. In this paper, a new analytic approximation method with a convergence acceleration parameter c is first proposed. The parameter c is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of c. Furthermore, a numerical approach for finding the optimal value of the convergence acceleration parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2017.08.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acceleration ; Adomian decomposition method ; Approximation ; Convergence ; Convergence acceleration parameter ; Differential equations ; Mathematical models ; Nonlinear differential equation ; Nonlinear equations ; Nonlinear systems ; Parameters ; Series solution</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2018-03, Vol.56, p.354-364</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-5fae1676763cd4ea81e953ebf97a645c92724c438f9c478e6b456bb1d9e63c003</citedby><cites>FETCH-LOGICAL-c331t-5fae1676763cd4ea81e953ebf97a645c92724c438f9c478e6b456bb1d9e63c003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570417303143$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaolong</creatorcontrib><creatorcontrib>Zou, Li</creatorcontrib><creatorcontrib>Liang, Songxin</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><title>A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given. In this paper, a new analytic approximation method with a convergence acceleration parameter c is first proposed. The parameter c is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of c. Furthermore, a numerical approach for finding the optimal value of the convergence acceleration parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves.</description><subject>Acceleration</subject><subject>Adomian decomposition method</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Convergence acceleration parameter</subject><subject>Differential equations</subject><subject>Mathematical models</subject><subject>Nonlinear differential equation</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Parameters</subject><subject>Series solution</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwyAchonRxDn9BF5IPLdCSws9eFgW_yVLvOiZUPrrRtNBha66by-zng0HODzvS94HoVtKUkpoed-l2gYb0oxQnhKRkqw4QwsquEh4xtl5fBPCk4ITdomuQuhITFUFWyC7wtZN0GNlVX8cjcZqGLz7Nns1GmfxHsada_CXGXdYYe3sBH4LVgNWWkMPfsYG5VVEwePWeRxcPxm7jc22NxaUx7Gy7mEfrtFFq_oAN3_3En08Pb6vX5LN2_PrerVJdJ7TMSlaBbTk8eS6YaAEharIoW4rrkpW6CrjGdMsF22lGRdQ1qwo65o2FcQEIfkS3c298ePPA4RRdu7g48QgM5IxEZGSRiqfKe1dCB5aOfg43B8lJfIkVnbyV6w8iZVEyCg2ph7mFMQBkwEvgzYnJY3xoEfZOPNv_gcMg4Ta</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Zhang, Xiaolong</creator><creator>Zou, Li</creator><creator>Liang, Songxin</creator><creator>Liu, Cheng</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201803</creationdate><title>A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems</title><author>Zhang, Xiaolong ; Zou, Li ; Liang, Songxin ; Liu, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-5fae1676763cd4ea81e953ebf97a645c92724c438f9c478e6b456bb1d9e63c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>Adomian decomposition method</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Convergence acceleration parameter</topic><topic>Differential equations</topic><topic>Mathematical models</topic><topic>Nonlinear differential equation</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Parameters</topic><topic>Series solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaolong</creatorcontrib><creatorcontrib>Zou, Li</creatorcontrib><creatorcontrib>Liang, Songxin</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaolong</au><au>Zou, Li</au><au>Liang, Songxin</au><au>Liu, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2018-03</date><risdate>2018</risdate><volume>56</volume><spage>354</spage><epage>364</epage><pages>354-364</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•A convergence acceleration parameter is introduced to enlarge the convergence rate and region.•A novel method is always valid no matter there exist small parameters or not in the problems.•A numerical method for choosing the optimal value of convergence acceleration parameter is given. In this paper, a new analytic approximation method with a convergence acceleration parameter c is first proposed. The parameter c is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of c. Furthermore, a numerical approach for finding the optimal value of the convergence acceleration parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2017.08.025</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2018-03, Vol.56, p.354-364
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2024800361
source Elsevier ScienceDirect Journals
subjects Acceleration
Adomian decomposition method
Approximation
Convergence
Convergence acceleration parameter
Differential equations
Mathematical models
Nonlinear differential equation
Nonlinear equations
Nonlinear systems
Parameters
Series solution
title A novel analytic approximation method with a convergence acceleration parameter for solving nonlinear problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20analytic%20approximation%20method%20with%20a%20convergence%20acceleration%20parameter%20for%20solving%20nonlinear%20problems&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Zhang,%20Xiaolong&rft.date=2018-03&rft.volume=56&rft.spage=354&rft.epage=364&rft.pages=354-364&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2017.08.025&rft_dat=%3Cproquest_cross%3E2024800361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024800361&rft_id=info:pmid/&rft_els_id=S1007570417303143&rfr_iscdi=true