Fumaric acid production using renewable resources from biodiesel and cane sugar production processes
The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2018-12, Vol.25 (36), p.35960-35970 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35970 |
---|---|
container_issue | 36 |
container_start_page | 35960 |
container_title | Environmental science and pollution research international |
container_volume | 25 |
creator | Papadaki, Aikaterini Papapostolou, Harris Alexandri, Maria Kopsahelis, Nikolaos Papanikolaou, Seraphim de Castro, Aline Machado Freire, Denise M. G. Koutinas, Apostolis A. |
description | The microbial production of fumaric acid by
Rhizopus arrhizus
NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either
Aspergillus oryzae
or
R. arrhizus
cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of
R. arrhizus
was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of
A. oryzae
at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by
R. arrhizus
, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production. |
doi_str_mv | 10.1007/s11356-018-1791-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024671159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2024671159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-92b427d3183171f29af66ed24143386030401dd7b4cc6954474f29d226c64933</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMotlYfwI0EXEdzkztJs5RiVSi46T7MJJkypZ2pSQfp25sy9WfjKhdy7vclh5Bb4A_AuX5MALJQjMOUgTbADmdkDAqQaTTmnIy5QWQgEUfkKqU154IboS_JSBhVIBbFmPh5vy1j42jpGk93sfO92zddS_vUtCsaQxs-y2oT8pS6PrqQaB27La2azjchhQ0tW09d2Qaa-lUZ_0bkMfMppGtyUZebFG5O54Qs58_L2StbvL-8zZ4WzCE3e2ZEhUJ7CVMJGmphylqp4AUCSjlVXHLk4L2u0Dll8gc0ZsgLoZxCI-WE3A-xufijD2lv1_nJbW60ggtUGqAwmYKBcrFLKYba7mKTHRwscHvUagetNmu1R632kHfuTsl9tQ3-Z-PbYwbEAKR81a5C_K3-P_ULzfiDOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024671159</pqid></control><display><type>article</type><title>Fumaric acid production using renewable resources from biodiesel and cane sugar production processes</title><source>MEDLINE</source><source>SpringerLink</source><creator>Papadaki, Aikaterini ; Papapostolou, Harris ; Alexandri, Maria ; Kopsahelis, Nikolaos ; Papanikolaou, Seraphim ; de Castro, Aline Machado ; Freire, Denise M. G. ; Koutinas, Apostolis A.</creator><creatorcontrib>Papadaki, Aikaterini ; Papapostolou, Harris ; Alexandri, Maria ; Kopsahelis, Nikolaos ; Papanikolaou, Seraphim ; de Castro, Aline Machado ; Freire, Denise M. G. ; Koutinas, Apostolis A.</creatorcontrib><description>The microbial production of fumaric acid by
Rhizopus arrhizus
NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either
Aspergillus oryzae
or
R. arrhizus
cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of
R. arrhizus
was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of
A. oryzae
at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by
R. arrhizus
, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-018-1791-y</identifier><identifier>PMID: 29654455</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid production ; Acids ; Aquatic Pollution ; Aspergillus oryzae ; Aspergillus oryzae - enzymology ; Atmospheric Protection/Air Quality Control/Air Pollution ; Batch Cell Culture Techniques ; Batch culture ; Biodiesel fuels ; Biofuels ; Chemical Industry ; Conservation of Natural Resources ; Diesel ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Enzymes ; Fermentation ; Food Industry ; Fumarates - metabolism ; Fumaric acid ; Glycine max ; Hydrolysis ; Industrial Waste ; Microorganisms ; Minerals ; Molasses ; Phenolic compounds ; Phenols ; Polarity ; Pretreatment ; Renewable resources ; Rhizopus - enzymology ; Rhizopus arrhizus ; Saccharum ; Soybeans ; Sugar ; Sugarcane ; Sugars - metabolism ; Sustainable Waste Management ; Sustainable yield ; Syrups & sweeteners ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2018-12, Vol.25 (36), p.35960-35970</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-92b427d3183171f29af66ed24143386030401dd7b4cc6954474f29d226c64933</citedby><cites>FETCH-LOGICAL-c409t-92b427d3183171f29af66ed24143386030401dd7b4cc6954474f29d226c64933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-018-1791-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-018-1791-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29654455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Papadaki, Aikaterini</creatorcontrib><creatorcontrib>Papapostolou, Harris</creatorcontrib><creatorcontrib>Alexandri, Maria</creatorcontrib><creatorcontrib>Kopsahelis, Nikolaos</creatorcontrib><creatorcontrib>Papanikolaou, Seraphim</creatorcontrib><creatorcontrib>de Castro, Aline Machado</creatorcontrib><creatorcontrib>Freire, Denise M. G.</creatorcontrib><creatorcontrib>Koutinas, Apostolis A.</creatorcontrib><title>Fumaric acid production using renewable resources from biodiesel and cane sugar production processes</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>The microbial production of fumaric acid by
Rhizopus arrhizus
NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either
Aspergillus oryzae
or
R. arrhizus
cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of
R. arrhizus
was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of
A. oryzae
at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by
R. arrhizus
, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.</description><subject>Acid production</subject><subject>Acids</subject><subject>Aquatic Pollution</subject><subject>Aspergillus oryzae</subject><subject>Aspergillus oryzae - enzymology</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Batch Cell Culture Techniques</subject><subject>Batch culture</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Chemical Industry</subject><subject>Conservation of Natural Resources</subject><subject>Diesel</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Food Industry</subject><subject>Fumarates - metabolism</subject><subject>Fumaric acid</subject><subject>Glycine max</subject><subject>Hydrolysis</subject><subject>Industrial Waste</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Molasses</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Polarity</subject><subject>Pretreatment</subject><subject>Renewable resources</subject><subject>Rhizopus - enzymology</subject><subject>Rhizopus arrhizus</subject><subject>Saccharum</subject><subject>Soybeans</subject><subject>Sugar</subject><subject>Sugarcane</subject><subject>Sugars - metabolism</subject><subject>Sustainable Waste Management</subject><subject>Sustainable yield</subject><subject>Syrups & sweeteners</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KAzEURoMotlYfwI0EXEdzkztJs5RiVSi46T7MJJkypZ2pSQfp25sy9WfjKhdy7vclh5Bb4A_AuX5MALJQjMOUgTbADmdkDAqQaTTmnIy5QWQgEUfkKqU154IboS_JSBhVIBbFmPh5vy1j42jpGk93sfO92zddS_vUtCsaQxs-y2oT8pS6PrqQaB27La2azjchhQ0tW09d2Qaa-lUZ_0bkMfMppGtyUZebFG5O54Qs58_L2StbvL-8zZ4WzCE3e2ZEhUJ7CVMJGmphylqp4AUCSjlVXHLk4L2u0Dll8gc0ZsgLoZxCI-WE3A-xufijD2lv1_nJbW60ggtUGqAwmYKBcrFLKYba7mKTHRwscHvUagetNmu1R632kHfuTsl9tQ3-Z-PbYwbEAKR81a5C_K3-P_ULzfiDOg</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Papadaki, Aikaterini</creator><creator>Papapostolou, Harris</creator><creator>Alexandri, Maria</creator><creator>Kopsahelis, Nikolaos</creator><creator>Papanikolaou, Seraphim</creator><creator>de Castro, Aline Machado</creator><creator>Freire, Denise M. G.</creator><creator>Koutinas, Apostolis A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20181201</creationdate><title>Fumaric acid production using renewable resources from biodiesel and cane sugar production processes</title><author>Papadaki, Aikaterini ; Papapostolou, Harris ; Alexandri, Maria ; Kopsahelis, Nikolaos ; Papanikolaou, Seraphim ; de Castro, Aline Machado ; Freire, Denise M. G. ; Koutinas, Apostolis A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-92b427d3183171f29af66ed24143386030401dd7b4cc6954474f29d226c64933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acid production</topic><topic>Acids</topic><topic>Aquatic Pollution</topic><topic>Aspergillus oryzae</topic><topic>Aspergillus oryzae - enzymology</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Batch Cell Culture Techniques</topic><topic>Batch culture</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Chemical Industry</topic><topic>Conservation of Natural Resources</topic><topic>Diesel</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Food Industry</topic><topic>Fumarates - metabolism</topic><topic>Fumaric acid</topic><topic>Glycine max</topic><topic>Hydrolysis</topic><topic>Industrial Waste</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Molasses</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Polarity</topic><topic>Pretreatment</topic><topic>Renewable resources</topic><topic>Rhizopus - enzymology</topic><topic>Rhizopus arrhizus</topic><topic>Saccharum</topic><topic>Soybeans</topic><topic>Sugar</topic><topic>Sugarcane</topic><topic>Sugars - metabolism</topic><topic>Sustainable Waste Management</topic><topic>Sustainable yield</topic><topic>Syrups & sweeteners</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadaki, Aikaterini</creatorcontrib><creatorcontrib>Papapostolou, Harris</creatorcontrib><creatorcontrib>Alexandri, Maria</creatorcontrib><creatorcontrib>Kopsahelis, Nikolaos</creatorcontrib><creatorcontrib>Papanikolaou, Seraphim</creatorcontrib><creatorcontrib>de Castro, Aline Machado</creatorcontrib><creatorcontrib>Freire, Denise M. G.</creatorcontrib><creatorcontrib>Koutinas, Apostolis A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadaki, Aikaterini</au><au>Papapostolou, Harris</au><au>Alexandri, Maria</au><au>Kopsahelis, Nikolaos</au><au>Papanikolaou, Seraphim</au><au>de Castro, Aline Machado</au><au>Freire, Denise M. G.</au><au>Koutinas, Apostolis A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fumaric acid production using renewable resources from biodiesel and cane sugar production processes</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>25</volume><issue>36</issue><spage>35960</spage><epage>35970</epage><pages>35960-35970</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The microbial production of fumaric acid by
Rhizopus arrhizus
NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either
Aspergillus oryzae
or
R. arrhizus
cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of
R. arrhizus
was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of
A. oryzae
at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by
R. arrhizus
, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29654455</pmid><doi>10.1007/s11356-018-1791-y</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2018-12, Vol.25 (36), p.35960-35970 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_journals_2024671159 |
source | MEDLINE; SpringerLink |
subjects | Acid production Acids Aquatic Pollution Aspergillus oryzae Aspergillus oryzae - enzymology Atmospheric Protection/Air Quality Control/Air Pollution Batch Cell Culture Techniques Batch culture Biodiesel fuels Biofuels Chemical Industry Conservation of Natural Resources Diesel Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Enzymes Fermentation Food Industry Fumarates - metabolism Fumaric acid Glycine max Hydrolysis Industrial Waste Microorganisms Minerals Molasses Phenolic compounds Phenols Polarity Pretreatment Renewable resources Rhizopus - enzymology Rhizopus arrhizus Saccharum Soybeans Sugar Sugarcane Sugars - metabolism Sustainable Waste Management Sustainable yield Syrups & sweeteners Waste Water Technology Water Management Water Pollution Control |
title | Fumaric acid production using renewable resources from biodiesel and cane sugar production processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fumaric%20acid%20production%20using%20renewable%20resources%20from%20biodiesel%20and%20cane%20sugar%20production%20processes&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Papadaki,%20Aikaterini&rft.date=2018-12-01&rft.volume=25&rft.issue=36&rft.spage=35960&rft.epage=35970&rft.pages=35960-35970&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-018-1791-y&rft_dat=%3Cproquest_cross%3E2024671159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024671159&rft_id=info:pmid/29654455&rfr_iscdi=true |