Fumaric acid production using renewable resources from biodiesel and cane sugar production processes

The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2018-12, Vol.25 (36), p.35960-35970
Hauptverfasser: Papadaki, Aikaterini, Papapostolou, Harris, Alexandri, Maria, Kopsahelis, Nikolaos, Papanikolaou, Seraphim, de Castro, Aline Machado, Freire, Denise M. G., Koutinas, Apostolis A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35970
container_issue 36
container_start_page 35960
container_title Environmental science and pollution research international
container_volume 25
creator Papadaki, Aikaterini
Papapostolou, Harris
Alexandri, Maria
Kopsahelis, Nikolaos
Papanikolaou, Seraphim
de Castro, Aline Machado
Freire, Denise M. G.
Koutinas, Apostolis A.
description The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus , probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.
doi_str_mv 10.1007/s11356-018-1791-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024671159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2024671159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-92b427d3183171f29af66ed24143386030401dd7b4cc6954474f29d226c64933</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMotlYfwI0EXEdzkztJs5RiVSi46T7MJJkypZ2pSQfp25sy9WfjKhdy7vclh5Bb4A_AuX5MALJQjMOUgTbADmdkDAqQaTTmnIy5QWQgEUfkKqU154IboS_JSBhVIBbFmPh5vy1j42jpGk93sfO92zddS_vUtCsaQxs-y2oT8pS6PrqQaB27La2azjchhQ0tW09d2Qaa-lUZ_0bkMfMppGtyUZebFG5O54Qs58_L2StbvL-8zZ4WzCE3e2ZEhUJ7CVMJGmphylqp4AUCSjlVXHLk4L2u0Dll8gc0ZsgLoZxCI-WE3A-xufijD2lv1_nJbW60ggtUGqAwmYKBcrFLKYba7mKTHRwscHvUagetNmu1R632kHfuTsl9tQ3-Z-PbYwbEAKR81a5C_K3-P_ULzfiDOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024671159</pqid></control><display><type>article</type><title>Fumaric acid production using renewable resources from biodiesel and cane sugar production processes</title><source>MEDLINE</source><source>SpringerLink</source><creator>Papadaki, Aikaterini ; Papapostolou, Harris ; Alexandri, Maria ; Kopsahelis, Nikolaos ; Papanikolaou, Seraphim ; de Castro, Aline Machado ; Freire, Denise M. G. ; Koutinas, Apostolis A.</creator><creatorcontrib>Papadaki, Aikaterini ; Papapostolou, Harris ; Alexandri, Maria ; Kopsahelis, Nikolaos ; Papanikolaou, Seraphim ; de Castro, Aline Machado ; Freire, Denise M. G. ; Koutinas, Apostolis A.</creatorcontrib><description>The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus , probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-018-1791-y</identifier><identifier>PMID: 29654455</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid production ; Acids ; Aquatic Pollution ; Aspergillus oryzae ; Aspergillus oryzae - enzymology ; Atmospheric Protection/Air Quality Control/Air Pollution ; Batch Cell Culture Techniques ; Batch culture ; Biodiesel fuels ; Biofuels ; Chemical Industry ; Conservation of Natural Resources ; Diesel ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Enzymes ; Fermentation ; Food Industry ; Fumarates - metabolism ; Fumaric acid ; Glycine max ; Hydrolysis ; Industrial Waste ; Microorganisms ; Minerals ; Molasses ; Phenolic compounds ; Phenols ; Polarity ; Pretreatment ; Renewable resources ; Rhizopus - enzymology ; Rhizopus arrhizus ; Saccharum ; Soybeans ; Sugar ; Sugarcane ; Sugars - metabolism ; Sustainable Waste Management ; Sustainable yield ; Syrups &amp; sweeteners ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2018-12, Vol.25 (36), p.35960-35970</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-92b427d3183171f29af66ed24143386030401dd7b4cc6954474f29d226c64933</citedby><cites>FETCH-LOGICAL-c409t-92b427d3183171f29af66ed24143386030401dd7b4cc6954474f29d226c64933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-018-1791-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-018-1791-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29654455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Papadaki, Aikaterini</creatorcontrib><creatorcontrib>Papapostolou, Harris</creatorcontrib><creatorcontrib>Alexandri, Maria</creatorcontrib><creatorcontrib>Kopsahelis, Nikolaos</creatorcontrib><creatorcontrib>Papanikolaou, Seraphim</creatorcontrib><creatorcontrib>de Castro, Aline Machado</creatorcontrib><creatorcontrib>Freire, Denise M. G.</creatorcontrib><creatorcontrib>Koutinas, Apostolis A.</creatorcontrib><title>Fumaric acid production using renewable resources from biodiesel and cane sugar production processes</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus , probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.</description><subject>Acid production</subject><subject>Acids</subject><subject>Aquatic Pollution</subject><subject>Aspergillus oryzae</subject><subject>Aspergillus oryzae - enzymology</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Batch Cell Culture Techniques</subject><subject>Batch culture</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Chemical Industry</subject><subject>Conservation of Natural Resources</subject><subject>Diesel</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Food Industry</subject><subject>Fumarates - metabolism</subject><subject>Fumaric acid</subject><subject>Glycine max</subject><subject>Hydrolysis</subject><subject>Industrial Waste</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Molasses</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Polarity</subject><subject>Pretreatment</subject><subject>Renewable resources</subject><subject>Rhizopus - enzymology</subject><subject>Rhizopus arrhizus</subject><subject>Saccharum</subject><subject>Soybeans</subject><subject>Sugar</subject><subject>Sugarcane</subject><subject>Sugars - metabolism</subject><subject>Sustainable Waste Management</subject><subject>Sustainable yield</subject><subject>Syrups &amp; sweeteners</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KAzEURoMotlYfwI0EXEdzkztJs5RiVSi46T7MJJkypZ2pSQfp25sy9WfjKhdy7vclh5Bb4A_AuX5MALJQjMOUgTbADmdkDAqQaTTmnIy5QWQgEUfkKqU154IboS_JSBhVIBbFmPh5vy1j42jpGk93sfO92zddS_vUtCsaQxs-y2oT8pS6PrqQaB27La2azjchhQ0tW09d2Qaa-lUZ_0bkMfMppGtyUZebFG5O54Qs58_L2StbvL-8zZ4WzCE3e2ZEhUJ7CVMJGmphylqp4AUCSjlVXHLk4L2u0Dll8gc0ZsgLoZxCI-WE3A-xufijD2lv1_nJbW60ggtUGqAwmYKBcrFLKYba7mKTHRwscHvUagetNmu1R632kHfuTsl9tQ3-Z-PbYwbEAKR81a5C_K3-P_ULzfiDOg</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Papadaki, Aikaterini</creator><creator>Papapostolou, Harris</creator><creator>Alexandri, Maria</creator><creator>Kopsahelis, Nikolaos</creator><creator>Papanikolaou, Seraphim</creator><creator>de Castro, Aline Machado</creator><creator>Freire, Denise M. G.</creator><creator>Koutinas, Apostolis A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20181201</creationdate><title>Fumaric acid production using renewable resources from biodiesel and cane sugar production processes</title><author>Papadaki, Aikaterini ; Papapostolou, Harris ; Alexandri, Maria ; Kopsahelis, Nikolaos ; Papanikolaou, Seraphim ; de Castro, Aline Machado ; Freire, Denise M. G. ; Koutinas, Apostolis A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-92b427d3183171f29af66ed24143386030401dd7b4cc6954474f29d226c64933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acid production</topic><topic>Acids</topic><topic>Aquatic Pollution</topic><topic>Aspergillus oryzae</topic><topic>Aspergillus oryzae - enzymology</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Batch Cell Culture Techniques</topic><topic>Batch culture</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Chemical Industry</topic><topic>Conservation of Natural Resources</topic><topic>Diesel</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Food Industry</topic><topic>Fumarates - metabolism</topic><topic>Fumaric acid</topic><topic>Glycine max</topic><topic>Hydrolysis</topic><topic>Industrial Waste</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Molasses</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Polarity</topic><topic>Pretreatment</topic><topic>Renewable resources</topic><topic>Rhizopus - enzymology</topic><topic>Rhizopus arrhizus</topic><topic>Saccharum</topic><topic>Soybeans</topic><topic>Sugar</topic><topic>Sugarcane</topic><topic>Sugars - metabolism</topic><topic>Sustainable Waste Management</topic><topic>Sustainable yield</topic><topic>Syrups &amp; sweeteners</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadaki, Aikaterini</creatorcontrib><creatorcontrib>Papapostolou, Harris</creatorcontrib><creatorcontrib>Alexandri, Maria</creatorcontrib><creatorcontrib>Kopsahelis, Nikolaos</creatorcontrib><creatorcontrib>Papanikolaou, Seraphim</creatorcontrib><creatorcontrib>de Castro, Aline Machado</creatorcontrib><creatorcontrib>Freire, Denise M. G.</creatorcontrib><creatorcontrib>Koutinas, Apostolis A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadaki, Aikaterini</au><au>Papapostolou, Harris</au><au>Alexandri, Maria</au><au>Kopsahelis, Nikolaos</au><au>Papanikolaou, Seraphim</au><au>de Castro, Aline Machado</au><au>Freire, Denise M. G.</au><au>Koutinas, Apostolis A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fumaric acid production using renewable resources from biodiesel and cane sugar production processes</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>25</volume><issue>36</issue><spage>35960</spage><epage>35970</epage><pages>35960-35970</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus , probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29654455</pmid><doi>10.1007/s11356-018-1791-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2018-12, Vol.25 (36), p.35960-35970
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_journals_2024671159
source MEDLINE; SpringerLink
subjects Acid production
Acids
Aquatic Pollution
Aspergillus oryzae
Aspergillus oryzae - enzymology
Atmospheric Protection/Air Quality Control/Air Pollution
Batch Cell Culture Techniques
Batch culture
Biodiesel fuels
Biofuels
Chemical Industry
Conservation of Natural Resources
Diesel
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Enzymes
Fermentation
Food Industry
Fumarates - metabolism
Fumaric acid
Glycine max
Hydrolysis
Industrial Waste
Microorganisms
Minerals
Molasses
Phenolic compounds
Phenols
Polarity
Pretreatment
Renewable resources
Rhizopus - enzymology
Rhizopus arrhizus
Saccharum
Soybeans
Sugar
Sugarcane
Sugars - metabolism
Sustainable Waste Management
Sustainable yield
Syrups & sweeteners
Waste Water Technology
Water Management
Water Pollution Control
title Fumaric acid production using renewable resources from biodiesel and cane sugar production processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fumaric%20acid%20production%20using%20renewable%20resources%20from%20biodiesel%20and%20cane%20sugar%20production%20processes&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Papadaki,%20Aikaterini&rft.date=2018-12-01&rft.volume=25&rft.issue=36&rft.spage=35960&rft.epage=35970&rft.pages=35960-35970&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-018-1791-y&rft_dat=%3Cproquest_cross%3E2024671159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024671159&rft_id=info:pmid/29654455&rfr_iscdi=true