Nonmetallic Inclusion Distribution within Ingots for Power Generation Engineering Forgings

Results are provided for a study of the distribution and location of nonmetallic inclusions in large forgings of steel 38KhN3MFA weighing 24.2 and 23.52 tons with a normal configuration and with a changed shape of the bottom part (“convex” bottom) cast in a vacuum. It is shown that the change in ing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgist (New York) 2018-03, Vol.61 (11-12), p.1041-1047
Hauptverfasser: Zyuban, N. A., Rutskii, D. V., Gamanyuk, S. B., Kirilichev, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Results are provided for a study of the distribution and location of nonmetallic inclusions in large forgings of steel 38KhN3MFA weighing 24.2 and 23.52 tons with a normal configuration and with a changed shape of the bottom part (“convex” bottom) cast in a vacuum. It is shown that the change in ingot bottom section geometry leads to an increase in temperature gradient and as a consequence to an increase solid phase advance intensity. In turn, this leads to more uniform distribution of oxysulfide inclusions. The sulfide inclusion content in the ingots compared increases from the periphery to the ingot axis. Dependences are obtained for metal ductility properties, i.e., relative elongation, relative reduction of area, and impact strength on sulfide inclusions distribution over ingot levels, and their unfavorable effect on these properties is established. It is shown that a reason for the reduction in ductility properties is sulfide phase location in the form of films of dendrite boundaries that occurs under conditions of a shortage of oxygen in the melt. This leads to a reduction in oxysulfide content and formation of a sulfide component in an unfavorable form distributed over cast grain boundaries. The ingots are destined for domestic power generation engineering forgings.
ISSN:0026-0894
1573-8892
DOI:10.1007/s11015-018-0605-2