Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes
•A thermoelectric energy harvesting system for wireless sensor nodes is designed.•An ultra-low voltage self-startup is implemented.•Maximum power point tracking and low power designs are applied for high efficiency.•Efficiency of 44.2–75.4% is obtained with open-circuit voltage of 84–400mV.•System e...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2017-04, Vol.138, p.30-37 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | |
container_start_page | 30 |
container_title | Energy conversion and management |
container_volume | 138 |
creator | Guan, Mingjie Wang, Kunpeng Xu, Dazheng Liao, Wei-Hsin |
description | •A thermoelectric energy harvesting system for wireless sensor nodes is designed.•An ultra-low voltage self-startup is implemented.•Maximum power point tracking and low power designs are applied for high efficiency.•Efficiency of 44.2–75.4% is obtained with open-circuit voltage of 84–400mV.•System efficiency is higher than the commercial BQ25504 converter.
A thermoelectric energy harvesting system designed to harvest tens of microwatts to several milliwatts from low-voltage thermoelectric generators is presented in this paper. The proposed system is based-on a two-stage boost scheme with self-startup ability. A maximum power point tracking technique based on the open-circuit voltage is adopted in the boost converter for high efficiency. Experimental results indicate that the proposed system can harvest thermoelectric energy and run a microcontroller unit and a wireless sensor node under low input voltage and power with high efficiency. The harvest system and wireless sensor node can be self-powered with minimum thermoelectric open-circuit voltage as 62mV and input power of 84μW. With a self-startup scheme, the proposed system can self-start with a 20mV input voltage. Low power designs are applied in the system to reduce the quiescent dissipation power. It results in better performance considering the conversion efficiency and self-startup ability compared to commercial boost systems used for thermal energy harvesting. |
doi_str_mv | 10.1016/j.enconman.2017.01.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024483327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890417300651</els_id><sourcerecordid>2024483327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-672d8a7f92bd00f810bd1620d175c06b7bdf47fa96462ca77c99ba53ba1079703</originalsourceid><addsrcrecordid>eNqFkE9v3CAQxVGVSN38-QoVUs92B-wFc2uUNk2lSLm0Z4Rh7LDywgbIJvvtQ7rpOafRSO-9mfcj5AuDlgET3zYtBhvD1oSWA5MtsBZ69Yms2CBVwzmXJ2QFTIlmUNB_Jmc5bwCgW4NYkZcfmP0cqAmO4ssOk99iKGahPuwxFz-b4mOgcaKGLvG52celmBlpecC0jbigLclbigHTfKAPJv1zhZnmQy64pVNM9NmnKsyZZgy57iE6zBfkdDJLxsv3eU7-3vz8c33b3N3_-n19ddfYrofSCMndYOSk-OgApoHB6Jjg4JhcWxCjHN3Uy8ko0QtujZRWqdGsu9EwkEpCd06-HnN3KT4-1ef0Jj6lUE9qDrzvh67jsqrEUWVTzDnhpHeVhEkHzUC_UdYb_Z-yfqOsgelKuRq_H41YO-w9Jp2tr0p0tbQt2kX_UcQryqiMTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024483327</pqid></control><display><type>article</type><title>Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes</title><source>Elsevier ScienceDirect Journals</source><creator>Guan, Mingjie ; Wang, Kunpeng ; Xu, Dazheng ; Liao, Wei-Hsin</creator><creatorcontrib>Guan, Mingjie ; Wang, Kunpeng ; Xu, Dazheng ; Liao, Wei-Hsin</creatorcontrib><description>•A thermoelectric energy harvesting system for wireless sensor nodes is designed.•An ultra-low voltage self-startup is implemented.•Maximum power point tracking and low power designs are applied for high efficiency.•Efficiency of 44.2–75.4% is obtained with open-circuit voltage of 84–400mV.•System efficiency is higher than the commercial BQ25504 converter.
A thermoelectric energy harvesting system designed to harvest tens of microwatts to several milliwatts from low-voltage thermoelectric generators is presented in this paper. The proposed system is based-on a two-stage boost scheme with self-startup ability. A maximum power point tracking technique based on the open-circuit voltage is adopted in the boost converter for high efficiency. Experimental results indicate that the proposed system can harvest thermoelectric energy and run a microcontroller unit and a wireless sensor node under low input voltage and power with high efficiency. The harvest system and wireless sensor node can be self-powered with minimum thermoelectric open-circuit voltage as 62mV and input power of 84μW. With a self-startup scheme, the proposed system can self-start with a 20mV input voltage. Low power designs are applied in the system to reduce the quiescent dissipation power. It results in better performance considering the conversion efficiency and self-startup ability compared to commercial boost systems used for thermal energy harvesting.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2017.01.049</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Converters ; Energy ; Energy conversion efficiency ; Energy harvesting ; Generators ; Heat exchangers ; Low-voltage ; Microcontrollers ; Open circuit voltage ; Thermal energy ; Thermoelectric energy conversion ; Thermoelectric generators ; Thermoelectricity ; Voltage ; Wireless sensor nodes</subject><ispartof>Energy conversion and management, 2017-04, Vol.138, p.30-37</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-672d8a7f92bd00f810bd1620d175c06b7bdf47fa96462ca77c99ba53ba1079703</citedby><cites>FETCH-LOGICAL-c340t-672d8a7f92bd00f810bd1620d175c06b7bdf47fa96462ca77c99ba53ba1079703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890417300651$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Guan, Mingjie</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Xu, Dazheng</creatorcontrib><creatorcontrib>Liao, Wei-Hsin</creatorcontrib><title>Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes</title><title>Energy conversion and management</title><description>•A thermoelectric energy harvesting system for wireless sensor nodes is designed.•An ultra-low voltage self-startup is implemented.•Maximum power point tracking and low power designs are applied for high efficiency.•Efficiency of 44.2–75.4% is obtained with open-circuit voltage of 84–400mV.•System efficiency is higher than the commercial BQ25504 converter.
A thermoelectric energy harvesting system designed to harvest tens of microwatts to several milliwatts from low-voltage thermoelectric generators is presented in this paper. The proposed system is based-on a two-stage boost scheme with self-startup ability. A maximum power point tracking technique based on the open-circuit voltage is adopted in the boost converter for high efficiency. Experimental results indicate that the proposed system can harvest thermoelectric energy and run a microcontroller unit and a wireless sensor node under low input voltage and power with high efficiency. The harvest system and wireless sensor node can be self-powered with minimum thermoelectric open-circuit voltage as 62mV and input power of 84μW. With a self-startup scheme, the proposed system can self-start with a 20mV input voltage. Low power designs are applied in the system to reduce the quiescent dissipation power. It results in better performance considering the conversion efficiency and self-startup ability compared to commercial boost systems used for thermal energy harvesting.</description><subject>Converters</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Generators</subject><subject>Heat exchangers</subject><subject>Low-voltage</subject><subject>Microcontrollers</subject><subject>Open circuit voltage</subject><subject>Thermal energy</subject><subject>Thermoelectric energy conversion</subject><subject>Thermoelectric generators</subject><subject>Thermoelectricity</subject><subject>Voltage</subject><subject>Wireless sensor nodes</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v3CAQxVGVSN38-QoVUs92B-wFc2uUNk2lSLm0Z4Rh7LDywgbIJvvtQ7rpOafRSO-9mfcj5AuDlgET3zYtBhvD1oSWA5MtsBZ69Yms2CBVwzmXJ2QFTIlmUNB_Jmc5bwCgW4NYkZcfmP0cqAmO4ssOk99iKGahPuwxFz-b4mOgcaKGLvG52celmBlpecC0jbigLclbigHTfKAPJv1zhZnmQy64pVNM9NmnKsyZZgy57iE6zBfkdDJLxsv3eU7-3vz8c33b3N3_-n19ddfYrofSCMndYOSk-OgApoHB6Jjg4JhcWxCjHN3Uy8ko0QtujZRWqdGsu9EwkEpCd06-HnN3KT4-1ef0Jj6lUE9qDrzvh67jsqrEUWVTzDnhpHeVhEkHzUC_UdYb_Z-yfqOsgelKuRq_H41YO-w9Jp2tr0p0tbQt2kX_UcQryqiMTQ</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Guan, Mingjie</creator><creator>Wang, Kunpeng</creator><creator>Xu, Dazheng</creator><creator>Liao, Wei-Hsin</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170415</creationdate><title>Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes</title><author>Guan, Mingjie ; Wang, Kunpeng ; Xu, Dazheng ; Liao, Wei-Hsin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-672d8a7f92bd00f810bd1620d175c06b7bdf47fa96462ca77c99ba53ba1079703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Converters</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Generators</topic><topic>Heat exchangers</topic><topic>Low-voltage</topic><topic>Microcontrollers</topic><topic>Open circuit voltage</topic><topic>Thermal energy</topic><topic>Thermoelectric energy conversion</topic><topic>Thermoelectric generators</topic><topic>Thermoelectricity</topic><topic>Voltage</topic><topic>Wireless sensor nodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Mingjie</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Xu, Dazheng</creatorcontrib><creatorcontrib>Liao, Wei-Hsin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Mingjie</au><au>Wang, Kunpeng</au><au>Xu, Dazheng</au><au>Liao, Wei-Hsin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes</atitle><jtitle>Energy conversion and management</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>138</volume><spage>30</spage><epage>37</epage><pages>30-37</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•A thermoelectric energy harvesting system for wireless sensor nodes is designed.•An ultra-low voltage self-startup is implemented.•Maximum power point tracking and low power designs are applied for high efficiency.•Efficiency of 44.2–75.4% is obtained with open-circuit voltage of 84–400mV.•System efficiency is higher than the commercial BQ25504 converter.
A thermoelectric energy harvesting system designed to harvest tens of microwatts to several milliwatts from low-voltage thermoelectric generators is presented in this paper. The proposed system is based-on a two-stage boost scheme with self-startup ability. A maximum power point tracking technique based on the open-circuit voltage is adopted in the boost converter for high efficiency. Experimental results indicate that the proposed system can harvest thermoelectric energy and run a microcontroller unit and a wireless sensor node under low input voltage and power with high efficiency. The harvest system and wireless sensor node can be self-powered with minimum thermoelectric open-circuit voltage as 62mV and input power of 84μW. With a self-startup scheme, the proposed system can self-start with a 20mV input voltage. Low power designs are applied in the system to reduce the quiescent dissipation power. It results in better performance considering the conversion efficiency and self-startup ability compared to commercial boost systems used for thermal energy harvesting.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2017.01.049</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2017-04, Vol.138, p.30-37 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_journals_2024483327 |
source | Elsevier ScienceDirect Journals |
subjects | Converters Energy Energy conversion efficiency Energy harvesting Generators Heat exchangers Low-voltage Microcontrollers Open circuit voltage Thermal energy Thermoelectric energy conversion Thermoelectric generators Thermoelectricity Voltage Wireless sensor nodes |
title | Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20experimental%20investigation%20of%20a%20low-voltage%20thermoelectric%20energy%20harvesting%20system%20for%20wireless%20sensor%20nodes&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Guan,%20Mingjie&rft.date=2017-04-15&rft.volume=138&rft.spage=30&rft.epage=37&rft.pages=30-37&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2017.01.049&rft_dat=%3Cproquest_cross%3E2024483327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024483327&rft_id=info:pmid/&rft_els_id=S0196890417300651&rfr_iscdi=true |