Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces
We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as mo...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2018-04, Vol.129, p.104-118 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | |
container_start_page | 104 |
container_title | Carbon (New York) |
container_volume | 129 |
creator | Dyatkin, Boris Osti, Naresh C. Zhang, Yu Wang, Hsiu-Wen Mamontov, Eugene Heller, William T. Zhang, Pengfei Rother, Gernot Cummings, Peter T. Wesolowski, David J. Gogotsi, Yury |
description | We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysis shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. We demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2017.12.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024479639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317312216</els_id><sourcerecordid>2024479639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-cf5e7526ab0793d476ca24b25712bcf4e8797abae5a73ae0b165acfb0434073e3</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlOUPOFji2gRviZMLEqpYKlXiAmfLcSbUUWu3dgL073EVuHIazcxb9B5CN5TklNDyrs-NDo13OSNU5pTlhNATNKOV5BmvanqKZoSQKisZ4-foIsY-raKiYoa-l95Zgzd2P9oWxyGMZhgDzHF7cHprTZxj7VoMGzBD8NGH3WC9w9bhyfLv00LEX3ZY48Zufas3eOdDOh25axgg-A9w4MeI4xg6bSBeobNObyJc_85L9P70-LZ4yVavz8vFwyozgtZDZroCZMFK3RBZ81bI0mgmGlZIyhrTCahkLXWjodCSayANLQttuoYILojkwC_R7aS7C34_QhxU78fgkqVihAkh65LXCSUmlEkhY4BO7YLd6nBQlKhjx6pXU2B17FhRplLHiXY_0SAl-LQQVDQWnIHWhlSLar39X-AHr5yJrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024479639</pqid></control><display><type>article</type><title>Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dyatkin, Boris ; Osti, Naresh C. ; Zhang, Yu ; Wang, Hsiu-Wen ; Mamontov, Eugene ; Heller, William T. ; Zhang, Pengfei ; Rother, Gernot ; Cummings, Peter T. ; Wesolowski, David J. ; Gogotsi, Yury</creator><creatorcontrib>Dyatkin, Boris ; Osti, Naresh C. ; Zhang, Yu ; Wang, Hsiu-Wen ; Mamontov, Eugene ; Heller, William T. ; Zhang, Pengfei ; Rother, Gernot ; Cummings, Peter T. ; Wesolowski, David J. ; Gogotsi, Yury</creatorcontrib><description>We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysis shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. We demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.12.001</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Capacitance ; Carbide-derived carbon ; Carbon ; Computer simulation ; Diffusion ; Distribution functions ; Dynamic structural analysis ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Energy storage ; Function analysis ; Interface ; Ionic liquid ; Ionic liquids ; Molecular dynamics ; Neutron scattering ; Pair distribution function ; Porosity ; Self diffusion ; Supercapacitor ; Surface chemistry ; Surface defects</subject><ispartof>Carbon (New York), 2018-04, Vol.129, p.104-118</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-cf5e7526ab0793d476ca24b25712bcf4e8797abae5a73ae0b165acfb0434073e3</citedby><cites>FETCH-LOGICAL-c419t-cf5e7526ab0793d476ca24b25712bcf4e8797abae5a73ae0b165acfb0434073e3</cites><orcidid>0000-0001-7537-2181 ; 0000-0001-9423-4032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2017.12.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Dyatkin, Boris</creatorcontrib><creatorcontrib>Osti, Naresh C.</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Wang, Hsiu-Wen</creatorcontrib><creatorcontrib>Mamontov, Eugene</creatorcontrib><creatorcontrib>Heller, William T.</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Rother, Gernot</creatorcontrib><creatorcontrib>Cummings, Peter T.</creatorcontrib><creatorcontrib>Wesolowski, David J.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><title>Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces</title><title>Carbon (New York)</title><description>We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysis shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. We demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.
[Display omitted]</description><subject>Capacitance</subject><subject>Carbide-derived carbon</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Distribution functions</subject><subject>Dynamic structural analysis</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Function analysis</subject><subject>Interface</subject><subject>Ionic liquid</subject><subject>Ionic liquids</subject><subject>Molecular dynamics</subject><subject>Neutron scattering</subject><subject>Pair distribution function</subject><subject>Porosity</subject><subject>Self diffusion</subject><subject>Supercapacitor</subject><subject>Surface chemistry</subject><subject>Surface defects</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlOUPOFji2gRviZMLEqpYKlXiAmfLcSbUUWu3dgL073EVuHIazcxb9B5CN5TklNDyrs-NDo13OSNU5pTlhNATNKOV5BmvanqKZoSQKisZ4-foIsY-raKiYoa-l95Zgzd2P9oWxyGMZhgDzHF7cHprTZxj7VoMGzBD8NGH3WC9w9bhyfLv00LEX3ZY48Zufas3eOdDOh25axgg-A9w4MeI4xg6bSBeobNObyJc_85L9P70-LZ4yVavz8vFwyozgtZDZroCZMFK3RBZ81bI0mgmGlZIyhrTCahkLXWjodCSayANLQttuoYILojkwC_R7aS7C34_QhxU78fgkqVihAkh65LXCSUmlEkhY4BO7YLd6nBQlKhjx6pXU2B17FhRplLHiXY_0SAl-LQQVDQWnIHWhlSLar39X-AHr5yJrQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dyatkin, Boris</creator><creator>Osti, Naresh C.</creator><creator>Zhang, Yu</creator><creator>Wang, Hsiu-Wen</creator><creator>Mamontov, Eugene</creator><creator>Heller, William T.</creator><creator>Zhang, Pengfei</creator><creator>Rother, Gernot</creator><creator>Cummings, Peter T.</creator><creator>Wesolowski, David J.</creator><creator>Gogotsi, Yury</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7537-2181</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid></search><sort><creationdate>20180401</creationdate><title>Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces</title><author>Dyatkin, Boris ; Osti, Naresh C. ; Zhang, Yu ; Wang, Hsiu-Wen ; Mamontov, Eugene ; Heller, William T. ; Zhang, Pengfei ; Rother, Gernot ; Cummings, Peter T. ; Wesolowski, David J. ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-cf5e7526ab0793d476ca24b25712bcf4e8797abae5a73ae0b165acfb0434073e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capacitance</topic><topic>Carbide-derived carbon</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Distribution functions</topic><topic>Dynamic structural analysis</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Function analysis</topic><topic>Interface</topic><topic>Ionic liquid</topic><topic>Ionic liquids</topic><topic>Molecular dynamics</topic><topic>Neutron scattering</topic><topic>Pair distribution function</topic><topic>Porosity</topic><topic>Self diffusion</topic><topic>Supercapacitor</topic><topic>Surface chemistry</topic><topic>Surface defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyatkin, Boris</creatorcontrib><creatorcontrib>Osti, Naresh C.</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Wang, Hsiu-Wen</creatorcontrib><creatorcontrib>Mamontov, Eugene</creatorcontrib><creatorcontrib>Heller, William T.</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Rother, Gernot</creatorcontrib><creatorcontrib>Cummings, Peter T.</creatorcontrib><creatorcontrib>Wesolowski, David J.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyatkin, Boris</au><au>Osti, Naresh C.</au><au>Zhang, Yu</au><au>Wang, Hsiu-Wen</au><au>Mamontov, Eugene</au><au>Heller, William T.</au><au>Zhang, Pengfei</au><au>Rother, Gernot</au><au>Cummings, Peter T.</au><au>Wesolowski, David J.</au><au>Gogotsi, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces</atitle><jtitle>Carbon (New York)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>129</volume><spage>104</spage><epage>118</epage><pages>104-118</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysis shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. We demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.12.001</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7537-2181</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2018-04, Vol.129, p.104-118 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2024479639 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Capacitance Carbide-derived carbon Carbon Computer simulation Diffusion Distribution functions Dynamic structural analysis Electrochemical analysis Electrode materials Electrodes Electrolytes Energy storage Function analysis Interface Ionic liquid Ionic liquids Molecular dynamics Neutron scattering Pair distribution function Porosity Self diffusion Supercapacitor Surface chemistry Surface defects |
title | Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20liquid%20structure,%20dynamics,%20and%20electrosorption%20in%20carbon%20electrodes%20with%20bimodal%20pores%20and%20heterogeneous%20surfaces&rft.jtitle=Carbon%20(New%20York)&rft.au=Dyatkin,%20Boris&rft.date=2018-04-01&rft.volume=129&rft.spage=104&rft.epage=118&rft.pages=104-118&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.12.001&rft_dat=%3Cproquest_cross%3E2024479639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024479639&rft_id=info:pmid/&rft_els_id=S0008622317312216&rfr_iscdi=true |