Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2018-04, Vol.129, p.104-118
Hauptverfasser: Dyatkin, Boris, Osti, Naresh C., Zhang, Yu, Wang, Hsiu-Wen, Mamontov, Eugene, Heller, William T., Zhang, Pengfei, Rother, Gernot, Cummings, Peter T., Wesolowski, David J., Gogotsi, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue
container_start_page 104
container_title Carbon (New York)
container_volume 129
creator Dyatkin, Boris
Osti, Naresh C.
Zhang, Yu
Wang, Hsiu-Wen
Mamontov, Eugene
Heller, William T.
Zhang, Pengfei
Rother, Gernot
Cummings, Peter T.
Wesolowski, David J.
Gogotsi, Yury
description We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysis shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. We demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.12.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024479639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317312216</els_id><sourcerecordid>2024479639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-cf5e7526ab0793d476ca24b25712bcf4e8797abae5a73ae0b165acfb0434073e3</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlOUPOFji2gRviZMLEqpYKlXiAmfLcSbUUWu3dgL073EVuHIazcxb9B5CN5TklNDyrs-NDo13OSNU5pTlhNATNKOV5BmvanqKZoSQKisZ4-foIsY-raKiYoa-l95Zgzd2P9oWxyGMZhgDzHF7cHprTZxj7VoMGzBD8NGH3WC9w9bhyfLv00LEX3ZY48Zufas3eOdDOh25axgg-A9w4MeI4xg6bSBeobNObyJc_85L9P70-LZ4yVavz8vFwyozgtZDZroCZMFK3RBZ81bI0mgmGlZIyhrTCahkLXWjodCSayANLQttuoYILojkwC_R7aS7C34_QhxU78fgkqVihAkh65LXCSUmlEkhY4BO7YLd6nBQlKhjx6pXU2B17FhRplLHiXY_0SAl-LQQVDQWnIHWhlSLar39X-AHr5yJrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024479639</pqid></control><display><type>article</type><title>Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dyatkin, Boris ; Osti, Naresh C. ; Zhang, Yu ; Wang, Hsiu-Wen ; Mamontov, Eugene ; Heller, William T. ; Zhang, Pengfei ; Rother, Gernot ; Cummings, Peter T. ; Wesolowski, David J. ; Gogotsi, Yury</creator><creatorcontrib>Dyatkin, Boris ; Osti, Naresh C. ; Zhang, Yu ; Wang, Hsiu-Wen ; Mamontov, Eugene ; Heller, William T. ; Zhang, Pengfei ; Rother, Gernot ; Cummings, Peter T. ; Wesolowski, David J. ; Gogotsi, Yury</creatorcontrib><description>We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysis shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. We demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.12.001</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Capacitance ; Carbide-derived carbon ; Carbon ; Computer simulation ; Diffusion ; Distribution functions ; Dynamic structural analysis ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Energy storage ; Function analysis ; Interface ; Ionic liquid ; Ionic liquids ; Molecular dynamics ; Neutron scattering ; Pair distribution function ; Porosity ; Self diffusion ; Supercapacitor ; Surface chemistry ; Surface defects</subject><ispartof>Carbon (New York), 2018-04, Vol.129, p.104-118</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-cf5e7526ab0793d476ca24b25712bcf4e8797abae5a73ae0b165acfb0434073e3</citedby><cites>FETCH-LOGICAL-c419t-cf5e7526ab0793d476ca24b25712bcf4e8797abae5a73ae0b165acfb0434073e3</cites><orcidid>0000-0001-7537-2181 ; 0000-0001-9423-4032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2017.12.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Dyatkin, Boris</creatorcontrib><creatorcontrib>Osti, Naresh C.</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Wang, Hsiu-Wen</creatorcontrib><creatorcontrib>Mamontov, Eugene</creatorcontrib><creatorcontrib>Heller, William T.</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Rother, Gernot</creatorcontrib><creatorcontrib>Cummings, Peter T.</creatorcontrib><creatorcontrib>Wesolowski, David J.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><title>Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces</title><title>Carbon (New York)</title><description>We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysis shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. We demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes. [Display omitted]</description><subject>Capacitance</subject><subject>Carbide-derived carbon</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Distribution functions</subject><subject>Dynamic structural analysis</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Function analysis</subject><subject>Interface</subject><subject>Ionic liquid</subject><subject>Ionic liquids</subject><subject>Molecular dynamics</subject><subject>Neutron scattering</subject><subject>Pair distribution function</subject><subject>Porosity</subject><subject>Self diffusion</subject><subject>Supercapacitor</subject><subject>Surface chemistry</subject><subject>Surface defects</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlOUPOFji2gRviZMLEqpYKlXiAmfLcSbUUWu3dgL073EVuHIazcxb9B5CN5TklNDyrs-NDo13OSNU5pTlhNATNKOV5BmvanqKZoSQKisZ4-foIsY-raKiYoa-l95Zgzd2P9oWxyGMZhgDzHF7cHprTZxj7VoMGzBD8NGH3WC9w9bhyfLv00LEX3ZY48Zufas3eOdDOh25axgg-A9w4MeI4xg6bSBeobNObyJc_85L9P70-LZ4yVavz8vFwyozgtZDZroCZMFK3RBZ81bI0mgmGlZIyhrTCahkLXWjodCSayANLQttuoYILojkwC_R7aS7C34_QhxU78fgkqVihAkh65LXCSUmlEkhY4BO7YLd6nBQlKhjx6pXU2B17FhRplLHiXY_0SAl-LQQVDQWnIHWhlSLar39X-AHr5yJrQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dyatkin, Boris</creator><creator>Osti, Naresh C.</creator><creator>Zhang, Yu</creator><creator>Wang, Hsiu-Wen</creator><creator>Mamontov, Eugene</creator><creator>Heller, William T.</creator><creator>Zhang, Pengfei</creator><creator>Rother, Gernot</creator><creator>Cummings, Peter T.</creator><creator>Wesolowski, David J.</creator><creator>Gogotsi, Yury</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7537-2181</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid></search><sort><creationdate>20180401</creationdate><title>Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces</title><author>Dyatkin, Boris ; Osti, Naresh C. ; Zhang, Yu ; Wang, Hsiu-Wen ; Mamontov, Eugene ; Heller, William T. ; Zhang, Pengfei ; Rother, Gernot ; Cummings, Peter T. ; Wesolowski, David J. ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-cf5e7526ab0793d476ca24b25712bcf4e8797abae5a73ae0b165acfb0434073e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capacitance</topic><topic>Carbide-derived carbon</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Distribution functions</topic><topic>Dynamic structural analysis</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Function analysis</topic><topic>Interface</topic><topic>Ionic liquid</topic><topic>Ionic liquids</topic><topic>Molecular dynamics</topic><topic>Neutron scattering</topic><topic>Pair distribution function</topic><topic>Porosity</topic><topic>Self diffusion</topic><topic>Supercapacitor</topic><topic>Surface chemistry</topic><topic>Surface defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyatkin, Boris</creatorcontrib><creatorcontrib>Osti, Naresh C.</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Wang, Hsiu-Wen</creatorcontrib><creatorcontrib>Mamontov, Eugene</creatorcontrib><creatorcontrib>Heller, William T.</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Rother, Gernot</creatorcontrib><creatorcontrib>Cummings, Peter T.</creatorcontrib><creatorcontrib>Wesolowski, David J.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyatkin, Boris</au><au>Osti, Naresh C.</au><au>Zhang, Yu</au><au>Wang, Hsiu-Wen</au><au>Mamontov, Eugene</au><au>Heller, William T.</au><au>Zhang, Pengfei</au><au>Rother, Gernot</au><au>Cummings, Peter T.</au><au>Wesolowski, David J.</au><au>Gogotsi, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces</atitle><jtitle>Carbon (New York)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>129</volume><spage>104</spage><epage>118</epage><pages>104-118</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>We investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysis shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. We demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.12.001</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7537-2181</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2018-04, Vol.129, p.104-118
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2024479639
source ScienceDirect Journals (5 years ago - present)
subjects Capacitance
Carbide-derived carbon
Carbon
Computer simulation
Diffusion
Distribution functions
Dynamic structural analysis
Electrochemical analysis
Electrode materials
Electrodes
Electrolytes
Energy storage
Function analysis
Interface
Ionic liquid
Ionic liquids
Molecular dynamics
Neutron scattering
Pair distribution function
Porosity
Self diffusion
Supercapacitor
Surface chemistry
Surface defects
title Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20liquid%20structure,%20dynamics,%20and%20electrosorption%20in%20carbon%20electrodes%20with%20bimodal%20pores%20and%20heterogeneous%20surfaces&rft.jtitle=Carbon%20(New%20York)&rft.au=Dyatkin,%20Boris&rft.date=2018-04-01&rft.volume=129&rft.spage=104&rft.epage=118&rft.pages=104-118&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.12.001&rft_dat=%3Cproquest_cross%3E2024479639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024479639&rft_id=info:pmid/&rft_els_id=S0008622317312216&rfr_iscdi=true