SemRec: a personalized semantic recommendation method based on weighted heterogeneous information networks
Recently heterogeneous information network (HIN) analysis has attracted a lot of attention, and many data mining tasks have been exploited on HIN. As an important data mining task, recommender system includes a lot of object types (e.g., users, movies, actors, and interest groups in movie recommenda...
Gespeichert in:
Veröffentlicht in: | World wide web (Bussum) 2019-01, Vol.22 (1), p.153-184 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | 1 |
container_start_page | 153 |
container_title | World wide web (Bussum) |
container_volume | 22 |
creator | Shi, Chuan Zhang, Zhiqiang Ji, Yugang Wang, Weipeng Yu, Philip S. Shi, Zhiping |
description | Recently heterogeneous information network (HIN) analysis has attracted a lot of attention, and many data mining tasks have been exploited on HIN. As an important data mining task, recommender system includes a lot of object types (e.g., users, movies, actors, and interest groups in movie recommendation) and the rich relations among object types, which naturally constitute a HIN. The comprehensive information integration and rich semantic information of HIN make it promising to generate better recommendations. However, conventional HINs do not consider the attribute values on links, and the widely used meta path in HIN may fail to accurately capture semantic relations among objects, due to the existence of rating scores (usually ranging from 1 to 5) between users and items in recommender system. In this paper, we introduce the weighted HIN and weighted meta path concepts to subtly depict the path semantics through distinguishing different link attribute values. Furthermore, we propose a semantic path based personalized recommendation method SemRec to predict the rating scores of users on items. Through setting meta paths, SemRec not only flexibly integrates heterogeneous information but also obtains prioritized and personalized weights representing user preferences on paths. Experiments on three real datasets illustrate that SemRec achieves better recommendation performance through flexibly integrating information with the help of weighted meta paths. Moreover, extensive experiments validate the benefits of weighted meta paths. |
doi_str_mv | 10.1007/s11280-018-0553-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024255519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2024255519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-14893cb059f9290eba07ef73efe6d2c6dc952280b43828bfab8b4ed01f5a6b1a3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A69E8JpkZd1J8QUHwAe5Ckrlpp3aSmqQU_fWmjODK1T0XvnO55yB0TvAlwbi-ioTQBpeYNCXmnJXiAE0Ir1lJKsIOs2aNyJq_H6OTGFcYY8FaMkGrFxiewVwXqthAiN6pdf8NXRFhUC71pghg_DCA61TqvSsGSEvfFVrFDOV9B_1imbJeQoLgF-DAb2PRO-vDMFocpJ0PH_EUHVm1jnD2O6fo7e72dfZQzp_uH2c389IwIlJ-smmZ0Zi3tqUtBq1wDbZmYEF01IjOtJzmrLpiDW20VbrRFXSYWK6EJopN0cV4dxP85xZikiu_DTlYlBTTinLOSZspMlIm-BgDWLkJ_aDClyRY7iuVY6UyVyr3lUqRPXT0xMy6BYS_y_-bfgC2EXvL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024255519</pqid></control><display><type>article</type><title>SemRec: a personalized semantic recommendation method based on weighted heterogeneous information networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shi, Chuan ; Zhang, Zhiqiang ; Ji, Yugang ; Wang, Weipeng ; Yu, Philip S. ; Shi, Zhiping</creator><creatorcontrib>Shi, Chuan ; Zhang, Zhiqiang ; Ji, Yugang ; Wang, Weipeng ; Yu, Philip S. ; Shi, Zhiping</creatorcontrib><description>Recently heterogeneous information network (HIN) analysis has attracted a lot of attention, and many data mining tasks have been exploited on HIN. As an important data mining task, recommender system includes a lot of object types (e.g., users, movies, actors, and interest groups in movie recommendation) and the rich relations among object types, which naturally constitute a HIN. The comprehensive information integration and rich semantic information of HIN make it promising to generate better recommendations. However, conventional HINs do not consider the attribute values on links, and the widely used meta path in HIN may fail to accurately capture semantic relations among objects, due to the existence of rating scores (usually ranging from 1 to 5) between users and items in recommender system. In this paper, we introduce the weighted HIN and weighted meta path concepts to subtly depict the path semantics through distinguishing different link attribute values. Furthermore, we propose a semantic path based personalized recommendation method SemRec to predict the rating scores of users on items. Through setting meta paths, SemRec not only flexibly integrates heterogeneous information but also obtains prioritized and personalized weights representing user preferences on paths. Experiments on three real datasets illustrate that SemRec achieves better recommendation performance through flexibly integrating information with the help of weighted meta paths. Moreover, extensive experiments validate the benefits of weighted meta paths.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-018-0553-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Data mining ; Database Management ; Information Systems Applications (incl.Internet) ; Operating Systems ; Recommender systems ; Semantics</subject><ispartof>World wide web (Bussum), 2019-01, Vol.22 (1), p.153-184</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>World Wide Web is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-14893cb059f9290eba07ef73efe6d2c6dc952280b43828bfab8b4ed01f5a6b1a3</citedby><cites>FETCH-LOGICAL-c316t-14893cb059f9290eba07ef73efe6d2c6dc952280b43828bfab8b4ed01f5a6b1a3</cites><orcidid>0000-0002-3734-0266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-018-0553-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-018-0553-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Zhang, Zhiqiang</creatorcontrib><creatorcontrib>Ji, Yugang</creatorcontrib><creatorcontrib>Wang, Weipeng</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Shi, Zhiping</creatorcontrib><title>SemRec: a personalized semantic recommendation method based on weighted heterogeneous information networks</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Recently heterogeneous information network (HIN) analysis has attracted a lot of attention, and many data mining tasks have been exploited on HIN. As an important data mining task, recommender system includes a lot of object types (e.g., users, movies, actors, and interest groups in movie recommendation) and the rich relations among object types, which naturally constitute a HIN. The comprehensive information integration and rich semantic information of HIN make it promising to generate better recommendations. However, conventional HINs do not consider the attribute values on links, and the widely used meta path in HIN may fail to accurately capture semantic relations among objects, due to the existence of rating scores (usually ranging from 1 to 5) between users and items in recommender system. In this paper, we introduce the weighted HIN and weighted meta path concepts to subtly depict the path semantics through distinguishing different link attribute values. Furthermore, we propose a semantic path based personalized recommendation method SemRec to predict the rating scores of users on items. Through setting meta paths, SemRec not only flexibly integrates heterogeneous information but also obtains prioritized and personalized weights representing user preferences on paths. Experiments on three real datasets illustrate that SemRec achieves better recommendation performance through flexibly integrating information with the help of weighted meta paths. Moreover, extensive experiments validate the benefits of weighted meta paths.</description><subject>Computer Science</subject><subject>Data mining</subject><subject>Database Management</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Operating Systems</subject><subject>Recommender systems</subject><subject>Semantics</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A69E8JpkZd1J8QUHwAe5Ckrlpp3aSmqQU_fWmjODK1T0XvnO55yB0TvAlwbi-ioTQBpeYNCXmnJXiAE0Ir1lJKsIOs2aNyJq_H6OTGFcYY8FaMkGrFxiewVwXqthAiN6pdf8NXRFhUC71pghg_DCA61TqvSsGSEvfFVrFDOV9B_1imbJeQoLgF-DAb2PRO-vDMFocpJ0PH_EUHVm1jnD2O6fo7e72dfZQzp_uH2c389IwIlJ-smmZ0Zi3tqUtBq1wDbZmYEF01IjOtJzmrLpiDW20VbrRFXSYWK6EJopN0cV4dxP85xZikiu_DTlYlBTTinLOSZspMlIm-BgDWLkJ_aDClyRY7iuVY6UyVyr3lUqRPXT0xMy6BYS_y_-bfgC2EXvL</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Shi, Chuan</creator><creator>Zhang, Zhiqiang</creator><creator>Ji, Yugang</creator><creator>Wang, Weipeng</creator><creator>Yu, Philip S.</creator><creator>Shi, Zhiping</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3734-0266</orcidid></search><sort><creationdate>20190101</creationdate><title>SemRec: a personalized semantic recommendation method based on weighted heterogeneous information networks</title><author>Shi, Chuan ; Zhang, Zhiqiang ; Ji, Yugang ; Wang, Weipeng ; Yu, Philip S. ; Shi, Zhiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-14893cb059f9290eba07ef73efe6d2c6dc952280b43828bfab8b4ed01f5a6b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Science</topic><topic>Data mining</topic><topic>Database Management</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Operating Systems</topic><topic>Recommender systems</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Zhang, Zhiqiang</creatorcontrib><creatorcontrib>Ji, Yugang</creatorcontrib><creatorcontrib>Wang, Weipeng</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Shi, Zhiping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Chuan</au><au>Zhang, Zhiqiang</au><au>Ji, Yugang</au><au>Wang, Weipeng</au><au>Yu, Philip S.</au><au>Shi, Zhiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SemRec: a personalized semantic recommendation method based on weighted heterogeneous information networks</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>22</volume><issue>1</issue><spage>153</spage><epage>184</epage><pages>153-184</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Recently heterogeneous information network (HIN) analysis has attracted a lot of attention, and many data mining tasks have been exploited on HIN. As an important data mining task, recommender system includes a lot of object types (e.g., users, movies, actors, and interest groups in movie recommendation) and the rich relations among object types, which naturally constitute a HIN. The comprehensive information integration and rich semantic information of HIN make it promising to generate better recommendations. However, conventional HINs do not consider the attribute values on links, and the widely used meta path in HIN may fail to accurately capture semantic relations among objects, due to the existence of rating scores (usually ranging from 1 to 5) between users and items in recommender system. In this paper, we introduce the weighted HIN and weighted meta path concepts to subtly depict the path semantics through distinguishing different link attribute values. Furthermore, we propose a semantic path based personalized recommendation method SemRec to predict the rating scores of users on items. Through setting meta paths, SemRec not only flexibly integrates heterogeneous information but also obtains prioritized and personalized weights representing user preferences on paths. Experiments on three real datasets illustrate that SemRec achieves better recommendation performance through flexibly integrating information with the help of weighted meta paths. Moreover, extensive experiments validate the benefits of weighted meta paths.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-018-0553-6</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-3734-0266</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-145X |
ispartof | World wide web (Bussum), 2019-01, Vol.22 (1), p.153-184 |
issn | 1386-145X 1573-1413 |
language | eng |
recordid | cdi_proquest_journals_2024255519 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer Science Data mining Database Management Information Systems Applications (incl.Internet) Operating Systems Recommender systems Semantics |
title | SemRec: a personalized semantic recommendation method based on weighted heterogeneous information networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SemRec:%20a%20personalized%20semantic%20recommendation%20method%20based%20on%20weighted%20heterogeneous%20information%20networks&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Shi,%20Chuan&rft.date=2019-01-01&rft.volume=22&rft.issue=1&rft.spage=153&rft.epage=184&rft.pages=153-184&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-018-0553-6&rft_dat=%3Cproquest_cross%3E2024255519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024255519&rft_id=info:pmid/&rfr_iscdi=true |