Granite-related Yangjiashan tungsten deposit, southern China

The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO 3 with an average ore grade of 0.70% WO 3 ) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralium deposita 2019-01, Vol.54 (1), p.67-80
Hauptverfasser: Xie, Guiqing, Mao, Jingwen, Li, Wei, Fu, Bin, Zhang, Zhiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 67
container_title Mineralium deposita
container_volume 54
creator Xie, Guiqing
Mao, Jingwen
Li, Wei
Fu, Bin
Zhang, Zhiyuan
description The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO 3 with an average ore grade of 0.70% WO 3 ) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age of 406.6 ± 2.8 Ma (2 σ , n  = 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean 206 Pb/ 238 U age of 409.8 ± 5.9 Ma (2 σ , n  = 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re–Os age of 404.2 ± 3.2 Ma (2 σ , n  = 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ 18 O H2O values of quartz intergrown with scheelite range from − 87 to − 68‰, and − 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ 34 S values of − 2.9 to − 0.7‰ with an average value of − 1.6‰ ( n  = 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz–muscovite greisen style of ore, supports a magmatic–hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz–wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.
doi_str_mv 10.1007/s00126-018-0805-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024250357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2024250357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-16ec58c791c41dd8a39882ae6a3ac5b4e8124708f772bbc35f6ee3a046ca4b793</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gisWJ4_owjsaCKFqRKLDAwWY7z0qYqTrGdgX9PqiAxMb3h3nOfdAi5ZnDHAMr7BMC4psAMBQOKqhMyY1JwyozWp2QGMKZSVeacXKS0A4CKSZiRh1V0octII-5dxqb4cGGz61zaulDkIWxSxlA0eOhTl2-L1A95izEUi20X3CU5a90-4dXvnZP35dPb4pmuX1cvi8c19YLpTJlGr4wvK-YlaxrjRGUMd6idcF7VEg3jsgTTliWvay9UqxGFA6m9k3VZiTm5mXYPsf8aMGW764cYxpeWA5dcgVDl2GJTy8c-pYitPcTu08Vvy8AeJdlJkh0l2aMkq0aGT0wau2GD8W_5f-gHBIlpLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024250357</pqid></control><display><type>article</type><title>Granite-related Yangjiashan tungsten deposit, southern China</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xie, Guiqing ; Mao, Jingwen ; Li, Wei ; Fu, Bin ; Zhang, Zhiyuan</creator><creatorcontrib>Xie, Guiqing ; Mao, Jingwen ; Li, Wei ; Fu, Bin ; Zhang, Zhiyuan</creatorcontrib><description>The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO 3 with an average ore grade of 0.70% WO 3 ) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age of 406.6 ± 2.8 Ma (2 σ , n  = 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean 206 Pb/ 238 U age of 409.8 ± 5.9 Ma (2 σ , n  = 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re–Os age of 404.2 ± 3.2 Ma (2 σ , n  = 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ 18 O H2O values of quartz intergrown with scheelite range from − 87 to − 68‰, and − 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ 34 S values of − 2.9 to − 0.7‰ with an average value of − 1.6‰ ( n  = 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz–muscovite greisen style of ore, supports a magmatic–hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz–wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-018-0805-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Age ; Bearing ; Biotite ; Calcium ; Cassiterite ; Devonian ; Earth and Environmental Science ; Earth Sciences ; Geochronology ; Geology ; Gold ; Granite ; Hydrothermal solutions ; Intrusion ; Isotopes ; Lead isotopes ; Mineral Resources ; Mineralization ; Mineralogy ; Molybdenite ; Muscovite ; Plagioclase ; Quartz ; Radiometric dating ; Scheelite ; Stable isotopes ; Tungsten ; Tungsten oxides ; Veins (geology) ; Wolframite ; Zircon</subject><ispartof>Mineralium deposita, 2019-01, Vol.54 (1), p.67-80</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Mineralium Deposita is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-16ec58c791c41dd8a39882ae6a3ac5b4e8124708f772bbc35f6ee3a046ca4b793</citedby><cites>FETCH-LOGICAL-c316t-16ec58c791c41dd8a39882ae6a3ac5b4e8124708f772bbc35f6ee3a046ca4b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-018-0805-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-018-0805-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Xie, Guiqing</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><title>Granite-related Yangjiashan tungsten deposit, southern China</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO 3 with an average ore grade of 0.70% WO 3 ) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age of 406.6 ± 2.8 Ma (2 σ , n  = 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean 206 Pb/ 238 U age of 409.8 ± 5.9 Ma (2 σ , n  = 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re–Os age of 404.2 ± 3.2 Ma (2 σ , n  = 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ 18 O H2O values of quartz intergrown with scheelite range from − 87 to − 68‰, and − 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ 34 S values of − 2.9 to − 0.7‰ with an average value of − 1.6‰ ( n  = 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz–muscovite greisen style of ore, supports a magmatic–hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz–wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.</description><subject>Age</subject><subject>Bearing</subject><subject>Biotite</subject><subject>Calcium</subject><subject>Cassiterite</subject><subject>Devonian</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochronology</subject><subject>Geology</subject><subject>Gold</subject><subject>Granite</subject><subject>Hydrothermal solutions</subject><subject>Intrusion</subject><subject>Isotopes</subject><subject>Lead isotopes</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Molybdenite</subject><subject>Muscovite</subject><subject>Plagioclase</subject><subject>Quartz</subject><subject>Radiometric dating</subject><subject>Scheelite</subject><subject>Stable isotopes</subject><subject>Tungsten</subject><subject>Tungsten oxides</subject><subject>Veins (geology)</subject><subject>Wolframite</subject><subject>Zircon</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAURS0EEqXwA9gisWJ4_owjsaCKFqRKLDAwWY7z0qYqTrGdgX9PqiAxMb3h3nOfdAi5ZnDHAMr7BMC4psAMBQOKqhMyY1JwyozWp2QGMKZSVeacXKS0A4CKSZiRh1V0octII-5dxqb4cGGz61zaulDkIWxSxlA0eOhTl2-L1A95izEUi20X3CU5a90-4dXvnZP35dPb4pmuX1cvi8c19YLpTJlGr4wvK-YlaxrjRGUMd6idcF7VEg3jsgTTliWvay9UqxGFA6m9k3VZiTm5mXYPsf8aMGW764cYxpeWA5dcgVDl2GJTy8c-pYitPcTu08Vvy8AeJdlJkh0l2aMkq0aGT0wau2GD8W_5f-gHBIlpLg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Xie, Guiqing</creator><creator>Mao, Jingwen</creator><creator>Li, Wei</creator><creator>Fu, Bin</creator><creator>Zhang, Zhiyuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20190101</creationdate><title>Granite-related Yangjiashan tungsten deposit, southern China</title><author>Xie, Guiqing ; Mao, Jingwen ; Li, Wei ; Fu, Bin ; Zhang, Zhiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-16ec58c791c41dd8a39882ae6a3ac5b4e8124708f772bbc35f6ee3a046ca4b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Age</topic><topic>Bearing</topic><topic>Biotite</topic><topic>Calcium</topic><topic>Cassiterite</topic><topic>Devonian</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochronology</topic><topic>Geology</topic><topic>Gold</topic><topic>Granite</topic><topic>Hydrothermal solutions</topic><topic>Intrusion</topic><topic>Isotopes</topic><topic>Lead isotopes</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Molybdenite</topic><topic>Muscovite</topic><topic>Plagioclase</topic><topic>Quartz</topic><topic>Radiometric dating</topic><topic>Scheelite</topic><topic>Stable isotopes</topic><topic>Tungsten</topic><topic>Tungsten oxides</topic><topic>Veins (geology)</topic><topic>Wolframite</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Guiqing</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Guiqing</au><au>Mao, Jingwen</au><au>Li, Wei</au><au>Fu, Bin</au><au>Zhang, Zhiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Granite-related Yangjiashan tungsten deposit, southern China</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>54</volume><issue>1</issue><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO 3 with an average ore grade of 0.70% WO 3 ) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age of 406.6 ± 2.8 Ma (2 σ , n  = 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean 206 Pb/ 238 U age of 409.8 ± 5.9 Ma (2 σ , n  = 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re–Os age of 404.2 ± 3.2 Ma (2 σ , n  = 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ 18 O H2O values of quartz intergrown with scheelite range from − 87 to − 68‰, and − 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ 34 S values of − 2.9 to − 0.7‰ with an average value of − 1.6‰ ( n  = 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz–muscovite greisen style of ore, supports a magmatic–hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz–wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-018-0805-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2019-01, Vol.54 (1), p.67-80
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_2024250357
source SpringerLink Journals - AutoHoldings
subjects Age
Bearing
Biotite
Calcium
Cassiterite
Devonian
Earth and Environmental Science
Earth Sciences
Geochronology
Geology
Gold
Granite
Hydrothermal solutions
Intrusion
Isotopes
Lead isotopes
Mineral Resources
Mineralization
Mineralogy
Molybdenite
Muscovite
Plagioclase
Quartz
Radiometric dating
Scheelite
Stable isotopes
Tungsten
Tungsten oxides
Veins (geology)
Wolframite
Zircon
title Granite-related Yangjiashan tungsten deposit, southern China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Granite-related%20Yangjiashan%20tungsten%20deposit,%20southern%20China&rft.jtitle=Mineralium%20deposita&rft.au=Xie,%20Guiqing&rft.date=2019-01-01&rft.volume=54&rft.issue=1&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-018-0805-5&rft_dat=%3Cproquest_cross%3E2024250357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024250357&rft_id=info:pmid/&rfr_iscdi=true