Granite-related Yangjiashan tungsten deposit, southern China
The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO 3 with an average ore grade of 0.70% WO 3 ) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age...
Gespeichert in:
Veröffentlicht in: | Mineralium deposita 2019-01, Vol.54 (1), p.67-80 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | Mineralium deposita |
container_volume | 54 |
creator | Xie, Guiqing Mao, Jingwen Li, Wei Fu, Bin Zhang, Zhiyuan |
description | The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO
3
with an average ore grade of 0.70% WO
3
) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age of 406.6 ± 2.8 Ma (2
σ
,
n
= 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean
206
Pb/
238
U age of 409.8 ± 5.9 Ma (2
σ
,
n
= 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re–Os age of 404.2 ± 3.2 Ma (2
σ
,
n
= 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ
18
O
H2O
values of quartz intergrown with scheelite range from − 87 to − 68‰, and − 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ
34
S values of − 2.9 to − 0.7‰ with an average value of − 1.6‰ (
n
= 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz–muscovite greisen style of ore, supports a magmatic–hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz–wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan. |
doi_str_mv | 10.1007/s00126-018-0805-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024250357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2024250357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-16ec58c791c41dd8a39882ae6a3ac5b4e8124708f772bbc35f6ee3a046ca4b793</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gisWJ4_owjsaCKFqRKLDAwWY7z0qYqTrGdgX9PqiAxMb3h3nOfdAi5ZnDHAMr7BMC4psAMBQOKqhMyY1JwyozWp2QGMKZSVeacXKS0A4CKSZiRh1V0octII-5dxqb4cGGz61zaulDkIWxSxlA0eOhTl2-L1A95izEUi20X3CU5a90-4dXvnZP35dPb4pmuX1cvi8c19YLpTJlGr4wvK-YlaxrjRGUMd6idcF7VEg3jsgTTliWvay9UqxGFA6m9k3VZiTm5mXYPsf8aMGW764cYxpeWA5dcgVDl2GJTy8c-pYitPcTu08Vvy8AeJdlJkh0l2aMkq0aGT0wau2GD8W_5f-gHBIlpLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024250357</pqid></control><display><type>article</type><title>Granite-related Yangjiashan tungsten deposit, southern China</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xie, Guiqing ; Mao, Jingwen ; Li, Wei ; Fu, Bin ; Zhang, Zhiyuan</creator><creatorcontrib>Xie, Guiqing ; Mao, Jingwen ; Li, Wei ; Fu, Bin ; Zhang, Zhiyuan</creatorcontrib><description>The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO
3
with an average ore grade of 0.70% WO
3
) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age of 406.6 ± 2.8 Ma (2
σ
,
n
= 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean
206
Pb/
238
U age of 409.8 ± 5.9 Ma (2
σ
,
n
= 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re–Os age of 404.2 ± 3.2 Ma (2
σ
,
n
= 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ
18
O
H2O
values of quartz intergrown with scheelite range from − 87 to − 68‰, and − 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ
34
S values of − 2.9 to − 0.7‰ with an average value of − 1.6‰ (
n
= 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz–muscovite greisen style of ore, supports a magmatic–hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz–wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-018-0805-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Age ; Bearing ; Biotite ; Calcium ; Cassiterite ; Devonian ; Earth and Environmental Science ; Earth Sciences ; Geochronology ; Geology ; Gold ; Granite ; Hydrothermal solutions ; Intrusion ; Isotopes ; Lead isotopes ; Mineral Resources ; Mineralization ; Mineralogy ; Molybdenite ; Muscovite ; Plagioclase ; Quartz ; Radiometric dating ; Scheelite ; Stable isotopes ; Tungsten ; Tungsten oxides ; Veins (geology) ; Wolframite ; Zircon</subject><ispartof>Mineralium deposita, 2019-01, Vol.54 (1), p.67-80</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Mineralium Deposita is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-16ec58c791c41dd8a39882ae6a3ac5b4e8124708f772bbc35f6ee3a046ca4b793</citedby><cites>FETCH-LOGICAL-c316t-16ec58c791c41dd8a39882ae6a3ac5b4e8124708f772bbc35f6ee3a046ca4b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-018-0805-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-018-0805-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Xie, Guiqing</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><title>Granite-related Yangjiashan tungsten deposit, southern China</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO
3
with an average ore grade of 0.70% WO
3
) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age of 406.6 ± 2.8 Ma (2
σ
,
n
= 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean
206
Pb/
238
U age of 409.8 ± 5.9 Ma (2
σ
,
n
= 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re–Os age of 404.2 ± 3.2 Ma (2
σ
,
n
= 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ
18
O
H2O
values of quartz intergrown with scheelite range from − 87 to − 68‰, and − 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ
34
S values of − 2.9 to − 0.7‰ with an average value of − 1.6‰ (
n
= 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz–muscovite greisen style of ore, supports a magmatic–hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz–wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.</description><subject>Age</subject><subject>Bearing</subject><subject>Biotite</subject><subject>Calcium</subject><subject>Cassiterite</subject><subject>Devonian</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochronology</subject><subject>Geology</subject><subject>Gold</subject><subject>Granite</subject><subject>Hydrothermal solutions</subject><subject>Intrusion</subject><subject>Isotopes</subject><subject>Lead isotopes</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Molybdenite</subject><subject>Muscovite</subject><subject>Plagioclase</subject><subject>Quartz</subject><subject>Radiometric dating</subject><subject>Scheelite</subject><subject>Stable isotopes</subject><subject>Tungsten</subject><subject>Tungsten oxides</subject><subject>Veins (geology)</subject><subject>Wolframite</subject><subject>Zircon</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAURS0EEqXwA9gisWJ4_owjsaCKFqRKLDAwWY7z0qYqTrGdgX9PqiAxMb3h3nOfdAi5ZnDHAMr7BMC4psAMBQOKqhMyY1JwyozWp2QGMKZSVeacXKS0A4CKSZiRh1V0octII-5dxqb4cGGz61zaulDkIWxSxlA0eOhTl2-L1A95izEUi20X3CU5a90-4dXvnZP35dPb4pmuX1cvi8c19YLpTJlGr4wvK-YlaxrjRGUMd6idcF7VEg3jsgTTliWvay9UqxGFA6m9k3VZiTm5mXYPsf8aMGW764cYxpeWA5dcgVDl2GJTy8c-pYitPcTu08Vvy8AeJdlJkh0l2aMkq0aGT0wau2GD8W_5f-gHBIlpLg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Xie, Guiqing</creator><creator>Mao, Jingwen</creator><creator>Li, Wei</creator><creator>Fu, Bin</creator><creator>Zhang, Zhiyuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20190101</creationdate><title>Granite-related Yangjiashan tungsten deposit, southern China</title><author>Xie, Guiqing ; Mao, Jingwen ; Li, Wei ; Fu, Bin ; Zhang, Zhiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-16ec58c791c41dd8a39882ae6a3ac5b4e8124708f772bbc35f6ee3a046ca4b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Age</topic><topic>Bearing</topic><topic>Biotite</topic><topic>Calcium</topic><topic>Cassiterite</topic><topic>Devonian</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochronology</topic><topic>Geology</topic><topic>Gold</topic><topic>Granite</topic><topic>Hydrothermal solutions</topic><topic>Intrusion</topic><topic>Isotopes</topic><topic>Lead isotopes</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Molybdenite</topic><topic>Muscovite</topic><topic>Plagioclase</topic><topic>Quartz</topic><topic>Radiometric dating</topic><topic>Scheelite</topic><topic>Stable isotopes</topic><topic>Tungsten</topic><topic>Tungsten oxides</topic><topic>Veins (geology)</topic><topic>Wolframite</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Guiqing</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Guiqing</au><au>Mao, Jingwen</au><au>Li, Wei</au><au>Fu, Bin</au><au>Zhang, Zhiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Granite-related Yangjiashan tungsten deposit, southern China</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>54</volume><issue>1</issue><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO
3
with an average ore grade of 0.70% WO
3
) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U–Pb age of 406.6 ± 2.8 Ma (2
σ
,
n
= 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean
206
Pb/
238
U age of 409.8 ± 5.9 Ma (2
σ
,
n
= 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re–Os age of 404.2 ± 3.2 Ma (2
σ
,
n
= 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ
18
O
H2O
values of quartz intergrown with scheelite range from − 87 to − 68‰, and − 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ
34
S values of − 2.9 to − 0.7‰ with an average value of − 1.6‰ (
n
= 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz–muscovite greisen style of ore, supports a magmatic–hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz–wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-018-0805-5</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2019-01, Vol.54 (1), p.67-80 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_2024250357 |
source | SpringerLink Journals - AutoHoldings |
subjects | Age Bearing Biotite Calcium Cassiterite Devonian Earth and Environmental Science Earth Sciences Geochronology Geology Gold Granite Hydrothermal solutions Intrusion Isotopes Lead isotopes Mineral Resources Mineralization Mineralogy Molybdenite Muscovite Plagioclase Quartz Radiometric dating Scheelite Stable isotopes Tungsten Tungsten oxides Veins (geology) Wolframite Zircon |
title | Granite-related Yangjiashan tungsten deposit, southern China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Granite-related%20Yangjiashan%20tungsten%20deposit,%20southern%20China&rft.jtitle=Mineralium%20deposita&rft.au=Xie,%20Guiqing&rft.date=2019-01-01&rft.volume=54&rft.issue=1&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-018-0805-5&rft_dat=%3Cproquest_cross%3E2024250357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024250357&rft_id=info:pmid/&rfr_iscdi=true |