Nanofibrous Tubular Membrane for Blood Hemodialysis
As the most important components of a hemodialysis device, nanofibrous membranes enjoy high interconnected porosity and specific surface area as well as excellect permeability. In this study, a tubular nanofibrous membrane of polysulfone nanofibers was produced via electrospinning method to remove u...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2018-10, Vol.186 (2), p.443-458 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the most important components of a hemodialysis device, nanofibrous membranes enjoy high interconnected porosity and specific surface area as well as excellect permeability. In this study, a tubular nanofibrous membrane of polysulfone nanofibers was produced via electrospinning method to remove urea and creatinine from urine and blood serums of dialysis patients. Nanofibrous membranes were electrospun at a concentration of 11.5 wt% of polysulfone (PS) and dimethylformamide (DMF)/tetrahydrofuran (THF) with a ratio of 70/30. The effects of the rotational speed of collectors, electrospinning duration, and inner diameter of the tubular nanofibrous membrane on the urea and creatinine removal efficiency of the tubular membrane were investigated through the hemodialysis simulation experiments. It was found that the tubular membrane with an inner diameter of 3 mm elecrospun at shorter duration with lower collecting speed had the highest urea and creatinine removal efficiency. The hemodialysis simulation experiment showed that the urea and creatinine removal efficiency of the tubular membrane with a diameter of 3 mm were 90.4 and 100%, respectively. Also, three patients’ blood serums were tested with the nanofibrous membrane. The results showed that the creatinine and urea removal rates were 93.2 and 90.3%, respectively. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-018-2744-0 |