The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China

To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2018-05, Vol.50 (9-10), p.3557-3570
Hauptverfasser: Sun, Weijun, Qin, Xiang, Wang, Yetang, Chen, Jizu, Du, Wentao, Zhang, Tong, Huai, Baojuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3570
container_issue 9-10
container_start_page 3557
container_title Climate dynamics
container_volume 50
creator Sun, Weijun
Qin, Xiang
Wang, Yetang
Chen, Jizu
Du, Wentao
Zhang, Tong
Huai, Baojuan
description To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010–2015, keeping the clean ice albedo fixed in the range of 0.3–0.4, LAIs caused an increase of +7.1 to +16 W m −2 of net shortwave radiation and an removal of 1101–2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.
doi_str_mv 10.1007/s00382-017-3823-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2023637241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534181250</galeid><sourcerecordid>A534181250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-f1403baab472272c228c3cdb84db2b9e12762eae578538f2690cfec10dfdd6d63</originalsourceid><addsrcrecordid>eNp1kU-LFDEQxYMoOK5-AG8BQRC21_zp7vQcl2FdF1ZEXc-hOl3pydKTjElandt-dDO2oHOQHIoUv5fKq0fIS84uOGPqbWJMdqJiXFWlyqp9RFa8lqXTrevHZMXWklWqUc1T8iyle8Z43SqxIg93W6QR0z74hDRYmuZowSDdQUoU_EDRYxwPtIcJvPmNADXBZ-fRZ5joOIFxGGkO1ExuBxnpd4gOeje5fDinPzBljJ5-Knfw9EOYi8z5dE43W-fhOXliYUr44k89I1_fXd1t3le3H69vNpe3lam7NleW10z2AH2thFDCCNEZaYa-q4de9GvkQrUCARvVNbKzol0zY9FwNthhaIdWnpFXy7v7GL7N5U_6PszRl5FaMCFbqUTNC3WxUCNMqJ23IUcw5Qy4c8U1Wlf6l42secdFw4rgzYnguBn8mUeYU9I3Xz6fsq__YbcIU96mMM3ZleWfgnwBTQwpRbR6H8tm40Fzpo9x6yVuXeLWx7j10Z9YNKmwfsT419__Rb8AEvisdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023637241</pqid></control><display><type>article</type><title>The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China</title><source>Springer Nature - Complete Springer Journals</source><creator>Sun, Weijun ; Qin, Xiang ; Wang, Yetang ; Chen, Jizu ; Du, Wentao ; Zhang, Tong ; Huai, Baojuan</creator><creatorcontrib>Sun, Weijun ; Qin, Xiang ; Wang, Yetang ; Chen, Jizu ; Du, Wentao ; Zhang, Tong ; Huai, Baojuan</creatorcontrib><description>To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010–2015, keeping the clean ice albedo fixed in the range of 0.3–0.4, LAIs caused an increase of +7.1 to +16 W m −2 of net shortwave radiation and an removal of 1101–2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-017-3823-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Air temperature ; Albedo ; Albedo (solar) ; Climate change ; Climate models ; Climate variability ; Climatology ; Continental glaciers ; Darkening ; Earth and Environmental Science ; Earth Sciences ; Energy ; Energy balance ; Energy budget ; Energy consumption ; Environmental aspects ; Equivalence ; Fluxes ; Geophysics/Geodesy ; Glacier mass balance ; Glacier melting ; Glaciers ; Ice sheets ; Impurities ; Mass balance of glaciers ; Mathematical models ; Mountains ; Observations ; Oceanography ; Radiation ; Removal ; Surface energy ; Surface energy balance ; Surface properties ; Water temperature ; Weather stations</subject><ispartof>Climate dynamics, 2018-05, Vol.50 (9-10), p.3557-3570</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-f1403baab472272c228c3cdb84db2b9e12762eae578538f2690cfec10dfdd6d63</citedby><cites>FETCH-LOGICAL-c486t-f1403baab472272c228c3cdb84db2b9e12762eae578538f2690cfec10dfdd6d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-017-3823-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-017-3823-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Weijun</creatorcontrib><creatorcontrib>Qin, Xiang</creatorcontrib><creatorcontrib>Wang, Yetang</creatorcontrib><creatorcontrib>Chen, Jizu</creatorcontrib><creatorcontrib>Du, Wentao</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Huai, Baojuan</creatorcontrib><title>The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010–2015, keeping the clean ice albedo fixed in the range of 0.3–0.4, LAIs caused an increase of +7.1 to +16 W m −2 of net shortwave radiation and an removal of 1101–2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.</description><subject>Ablation</subject><subject>Air temperature</subject><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>Climatology</subject><subject>Continental glaciers</subject><subject>Darkening</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy budget</subject><subject>Energy consumption</subject><subject>Environmental aspects</subject><subject>Equivalence</subject><subject>Fluxes</subject><subject>Geophysics/Geodesy</subject><subject>Glacier mass balance</subject><subject>Glacier melting</subject><subject>Glaciers</subject><subject>Ice sheets</subject><subject>Impurities</subject><subject>Mass balance of glaciers</subject><subject>Mathematical models</subject><subject>Mountains</subject><subject>Observations</subject><subject>Oceanography</subject><subject>Radiation</subject><subject>Removal</subject><subject>Surface energy</subject><subject>Surface energy balance</subject><subject>Surface properties</subject><subject>Water temperature</subject><subject>Weather stations</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU-LFDEQxYMoOK5-AG8BQRC21_zp7vQcl2FdF1ZEXc-hOl3pydKTjElandt-dDO2oHOQHIoUv5fKq0fIS84uOGPqbWJMdqJiXFWlyqp9RFa8lqXTrevHZMXWklWqUc1T8iyle8Z43SqxIg93W6QR0z74hDRYmuZowSDdQUoU_EDRYxwPtIcJvPmNADXBZ-fRZ5joOIFxGGkO1ExuBxnpd4gOeje5fDinPzBljJ5-Knfw9EOYi8z5dE43W-fhOXliYUr44k89I1_fXd1t3le3H69vNpe3lam7NleW10z2AH2thFDCCNEZaYa-q4de9GvkQrUCARvVNbKzol0zY9FwNthhaIdWnpFXy7v7GL7N5U_6PszRl5FaMCFbqUTNC3WxUCNMqJ23IUcw5Qy4c8U1Wlf6l42secdFw4rgzYnguBn8mUeYU9I3Xz6fsq__YbcIU96mMM3ZleWfgnwBTQwpRbR6H8tm40Fzpo9x6yVuXeLWx7j10Z9YNKmwfsT419__Rb8AEvisdw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Sun, Weijun</creator><creator>Qin, Xiang</creator><creator>Wang, Yetang</creator><creator>Chen, Jizu</creator><creator>Du, Wentao</creator><creator>Zhang, Tong</creator><creator>Huai, Baojuan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180501</creationdate><title>The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China</title><author>Sun, Weijun ; Qin, Xiang ; Wang, Yetang ; Chen, Jizu ; Du, Wentao ; Zhang, Tong ; Huai, Baojuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-f1403baab472272c228c3cdb84db2b9e12762eae578538f2690cfec10dfdd6d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ablation</topic><topic>Air temperature</topic><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>Climatology</topic><topic>Continental glaciers</topic><topic>Darkening</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy budget</topic><topic>Energy consumption</topic><topic>Environmental aspects</topic><topic>Equivalence</topic><topic>Fluxes</topic><topic>Geophysics/Geodesy</topic><topic>Glacier mass balance</topic><topic>Glacier melting</topic><topic>Glaciers</topic><topic>Ice sheets</topic><topic>Impurities</topic><topic>Mass balance of glaciers</topic><topic>Mathematical models</topic><topic>Mountains</topic><topic>Observations</topic><topic>Oceanography</topic><topic>Radiation</topic><topic>Removal</topic><topic>Surface energy</topic><topic>Surface energy balance</topic><topic>Surface properties</topic><topic>Water temperature</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Weijun</creatorcontrib><creatorcontrib>Qin, Xiang</creatorcontrib><creatorcontrib>Wang, Yetang</creatorcontrib><creatorcontrib>Chen, Jizu</creatorcontrib><creatorcontrib>Du, Wentao</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Huai, Baojuan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Weijun</au><au>Qin, Xiang</au><au>Wang, Yetang</au><au>Chen, Jizu</au><au>Du, Wentao</au><au>Zhang, Tong</au><au>Huai, Baojuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>50</volume><issue>9-10</issue><spage>3557</spage><epage>3570</epage><pages>3557-3570</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010–2015, keeping the clean ice albedo fixed in the range of 0.3–0.4, LAIs caused an increase of +7.1 to +16 W m −2 of net shortwave radiation and an removal of 1101–2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-017-3823-6</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2018-05, Vol.50 (9-10), p.3557-3570
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2023637241
source Springer Nature - Complete Springer Journals
subjects Ablation
Air temperature
Albedo
Albedo (solar)
Climate change
Climate models
Climate variability
Climatology
Continental glaciers
Darkening
Earth and Environmental Science
Earth Sciences
Energy
Energy balance
Energy budget
Energy consumption
Environmental aspects
Equivalence
Fluxes
Geophysics/Geodesy
Glacier mass balance
Glacier melting
Glaciers
Ice sheets
Impurities
Mass balance of glaciers
Mathematical models
Mountains
Observations
Oceanography
Radiation
Removal
Surface energy
Surface energy balance
Surface properties
Water temperature
Weather stations
title The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20response%20of%20surface%20mass%20and%20energy%20balance%20of%20a%20continental%20glacier%20to%20climate%20variability,%20western%20Qilian%20Mountains,%20China&rft.jtitle=Climate%20dynamics&rft.au=Sun,%20Weijun&rft.date=2018-05-01&rft.volume=50&rft.issue=9-10&rft.spage=3557&rft.epage=3570&rft.pages=3557-3570&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-017-3823-6&rft_dat=%3Cgale_proqu%3EA534181250%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023637241&rft_id=info:pmid/&rft_galeid=A534181250&rfr_iscdi=true