The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China
To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease sur...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2018-05, Vol.50 (9-10), p.3557-3570 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3570 |
---|---|
container_issue | 9-10 |
container_start_page | 3557 |
container_title | Climate dynamics |
container_volume | 50 |
creator | Sun, Weijun Qin, Xiang Wang, Yetang Chen, Jizu Du, Wentao Zhang, Tong Huai, Baojuan |
description | To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010–2015, keeping the clean ice albedo fixed in the range of 0.3–0.4, LAIs caused an increase of +7.1 to +16 W m
−2
of net shortwave radiation and an removal of 1101–2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively. |
doi_str_mv | 10.1007/s00382-017-3823-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2023637241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534181250</galeid><sourcerecordid>A534181250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-f1403baab472272c228c3cdb84db2b9e12762eae578538f2690cfec10dfdd6d63</originalsourceid><addsrcrecordid>eNp1kU-LFDEQxYMoOK5-AG8BQRC21_zp7vQcl2FdF1ZEXc-hOl3pydKTjElandt-dDO2oHOQHIoUv5fKq0fIS84uOGPqbWJMdqJiXFWlyqp9RFa8lqXTrevHZMXWklWqUc1T8iyle8Z43SqxIg93W6QR0z74hDRYmuZowSDdQUoU_EDRYxwPtIcJvPmNADXBZ-fRZ5joOIFxGGkO1ExuBxnpd4gOeje5fDinPzBljJ5-Knfw9EOYi8z5dE43W-fhOXliYUr44k89I1_fXd1t3le3H69vNpe3lam7NleW10z2AH2thFDCCNEZaYa-q4de9GvkQrUCARvVNbKzol0zY9FwNthhaIdWnpFXy7v7GL7N5U_6PszRl5FaMCFbqUTNC3WxUCNMqJ23IUcw5Qy4c8U1Wlf6l42secdFw4rgzYnguBn8mUeYU9I3Xz6fsq__YbcIU96mMM3ZleWfgnwBTQwpRbR6H8tm40Fzpo9x6yVuXeLWx7j10Z9YNKmwfsT419__Rb8AEvisdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023637241</pqid></control><display><type>article</type><title>The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China</title><source>Springer Nature - Complete Springer Journals</source><creator>Sun, Weijun ; Qin, Xiang ; Wang, Yetang ; Chen, Jizu ; Du, Wentao ; Zhang, Tong ; Huai, Baojuan</creator><creatorcontrib>Sun, Weijun ; Qin, Xiang ; Wang, Yetang ; Chen, Jizu ; Du, Wentao ; Zhang, Tong ; Huai, Baojuan</creatorcontrib><description>To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010–2015, keeping the clean ice albedo fixed in the range of 0.3–0.4, LAIs caused an increase of +7.1 to +16 W m
−2
of net shortwave radiation and an removal of 1101–2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-017-3823-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Air temperature ; Albedo ; Albedo (solar) ; Climate change ; Climate models ; Climate variability ; Climatology ; Continental glaciers ; Darkening ; Earth and Environmental Science ; Earth Sciences ; Energy ; Energy balance ; Energy budget ; Energy consumption ; Environmental aspects ; Equivalence ; Fluxes ; Geophysics/Geodesy ; Glacier mass balance ; Glacier melting ; Glaciers ; Ice sheets ; Impurities ; Mass balance of glaciers ; Mathematical models ; Mountains ; Observations ; Oceanography ; Radiation ; Removal ; Surface energy ; Surface energy balance ; Surface properties ; Water temperature ; Weather stations</subject><ispartof>Climate dynamics, 2018-05, Vol.50 (9-10), p.3557-3570</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-f1403baab472272c228c3cdb84db2b9e12762eae578538f2690cfec10dfdd6d63</citedby><cites>FETCH-LOGICAL-c486t-f1403baab472272c228c3cdb84db2b9e12762eae578538f2690cfec10dfdd6d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-017-3823-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-017-3823-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Weijun</creatorcontrib><creatorcontrib>Qin, Xiang</creatorcontrib><creatorcontrib>Wang, Yetang</creatorcontrib><creatorcontrib>Chen, Jizu</creatorcontrib><creatorcontrib>Du, Wentao</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Huai, Baojuan</creatorcontrib><title>The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010–2015, keeping the clean ice albedo fixed in the range of 0.3–0.4, LAIs caused an increase of +7.1 to +16 W m
−2
of net shortwave radiation and an removal of 1101–2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.</description><subject>Ablation</subject><subject>Air temperature</subject><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>Climatology</subject><subject>Continental glaciers</subject><subject>Darkening</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy budget</subject><subject>Energy consumption</subject><subject>Environmental aspects</subject><subject>Equivalence</subject><subject>Fluxes</subject><subject>Geophysics/Geodesy</subject><subject>Glacier mass balance</subject><subject>Glacier melting</subject><subject>Glaciers</subject><subject>Ice sheets</subject><subject>Impurities</subject><subject>Mass balance of glaciers</subject><subject>Mathematical models</subject><subject>Mountains</subject><subject>Observations</subject><subject>Oceanography</subject><subject>Radiation</subject><subject>Removal</subject><subject>Surface energy</subject><subject>Surface energy balance</subject><subject>Surface properties</subject><subject>Water temperature</subject><subject>Weather stations</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU-LFDEQxYMoOK5-AG8BQRC21_zp7vQcl2FdF1ZEXc-hOl3pydKTjElandt-dDO2oHOQHIoUv5fKq0fIS84uOGPqbWJMdqJiXFWlyqp9RFa8lqXTrevHZMXWklWqUc1T8iyle8Z43SqxIg93W6QR0z74hDRYmuZowSDdQUoU_EDRYxwPtIcJvPmNADXBZ-fRZ5joOIFxGGkO1ExuBxnpd4gOeje5fDinPzBljJ5-Knfw9EOYi8z5dE43W-fhOXliYUr44k89I1_fXd1t3le3H69vNpe3lam7NleW10z2AH2thFDCCNEZaYa-q4de9GvkQrUCARvVNbKzol0zY9FwNthhaIdWnpFXy7v7GL7N5U_6PszRl5FaMCFbqUTNC3WxUCNMqJ23IUcw5Qy4c8U1Wlf6l42secdFw4rgzYnguBn8mUeYU9I3Xz6fsq__YbcIU96mMM3ZleWfgnwBTQwpRbR6H8tm40Fzpo9x6yVuXeLWx7j10Z9YNKmwfsT419__Rb8AEvisdw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Sun, Weijun</creator><creator>Qin, Xiang</creator><creator>Wang, Yetang</creator><creator>Chen, Jizu</creator><creator>Du, Wentao</creator><creator>Zhang, Tong</creator><creator>Huai, Baojuan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180501</creationdate><title>The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China</title><author>Sun, Weijun ; Qin, Xiang ; Wang, Yetang ; Chen, Jizu ; Du, Wentao ; Zhang, Tong ; Huai, Baojuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-f1403baab472272c228c3cdb84db2b9e12762eae578538f2690cfec10dfdd6d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ablation</topic><topic>Air temperature</topic><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>Climatology</topic><topic>Continental glaciers</topic><topic>Darkening</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy budget</topic><topic>Energy consumption</topic><topic>Environmental aspects</topic><topic>Equivalence</topic><topic>Fluxes</topic><topic>Geophysics/Geodesy</topic><topic>Glacier mass balance</topic><topic>Glacier melting</topic><topic>Glaciers</topic><topic>Ice sheets</topic><topic>Impurities</topic><topic>Mass balance of glaciers</topic><topic>Mathematical models</topic><topic>Mountains</topic><topic>Observations</topic><topic>Oceanography</topic><topic>Radiation</topic><topic>Removal</topic><topic>Surface energy</topic><topic>Surface energy balance</topic><topic>Surface properties</topic><topic>Water temperature</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Weijun</creatorcontrib><creatorcontrib>Qin, Xiang</creatorcontrib><creatorcontrib>Wang, Yetang</creatorcontrib><creatorcontrib>Chen, Jizu</creatorcontrib><creatorcontrib>Du, Wentao</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Huai, Baojuan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Weijun</au><au>Qin, Xiang</au><au>Wang, Yetang</au><au>Chen, Jizu</au><au>Du, Wentao</au><au>Zhang, Tong</au><au>Huai, Baojuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>50</volume><issue>9-10</issue><spage>3557</spage><epage>3570</epage><pages>3557-3570</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010–2015, keeping the clean ice albedo fixed in the range of 0.3–0.4, LAIs caused an increase of +7.1 to +16 W m
−2
of net shortwave radiation and an removal of 1101–2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-017-3823-6</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2018-05, Vol.50 (9-10), p.3557-3570 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2023637241 |
source | Springer Nature - Complete Springer Journals |
subjects | Ablation Air temperature Albedo Albedo (solar) Climate change Climate models Climate variability Climatology Continental glaciers Darkening Earth and Environmental Science Earth Sciences Energy Energy balance Energy budget Energy consumption Environmental aspects Equivalence Fluxes Geophysics/Geodesy Glacier mass balance Glacier melting Glaciers Ice sheets Impurities Mass balance of glaciers Mathematical models Mountains Observations Oceanography Radiation Removal Surface energy Surface energy balance Surface properties Water temperature Weather stations |
title | The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20response%20of%20surface%20mass%20and%20energy%20balance%20of%20a%20continental%20glacier%20to%20climate%20variability,%20western%20Qilian%20Mountains,%20China&rft.jtitle=Climate%20dynamics&rft.au=Sun,%20Weijun&rft.date=2018-05-01&rft.volume=50&rft.issue=9-10&rft.spage=3557&rft.epage=3570&rft.pages=3557-3570&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-017-3823-6&rft_dat=%3Cgale_proqu%3EA534181250%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023637241&rft_id=info:pmid/&rft_galeid=A534181250&rfr_iscdi=true |