Comparing cross-country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets

Chotikapanich and Griffiths (Journal of Business and Economic Statistics, 2002, 20(2), 290–295) introduced the Dirichlet distribution to the estimation of Lorenz curves. This distribution naturally accommodates the proportional nature of income share data and the dependence structure between the sha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2018-04, Vol.33 (3), p.473-478
Hauptverfasser: Chang, Andrew C., Li, Phillip, Martin, Shawn M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 3
container_start_page 473
container_title Journal of applied econometrics (Chichester, England)
container_volume 33
creator Chang, Andrew C.
Li, Phillip
Martin, Shawn M.
description Chotikapanich and Griffiths (Journal of Business and Economic Statistics, 2002, 20(2), 290–295) introduced the Dirichlet distribution to the estimation of Lorenz curves. This distribution naturally accommodates the proportional nature of income share data and the dependence structure between the shares. Chotikapanich and Griffiths fit a family of five Lorenz curves to one year of Swedish and Brazilian income share data using unconstrained maximum likelihood and unconstrained nonlinear least squares. We attempt to replicate the authors’ results and extend their analyses using both constrained estimation techniques and five additional years of data. We successfully replicate a majority of the authors' results and find that some of their main qualitative conclusions also hold using our constrained estimators and additional data.
doi_str_mv 10.1002/jae.2595
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2023521687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26609858</jstor_id><sourcerecordid>26609858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3825-8670193610d85ab2fbc71396f313ad8a83e8b4778a70d755e66402a4be2a95373</originalsourceid><addsrcrecordid>eNp10M1LwzAYBvAgCs4p-A8IAS9eOt8ky0ePY84vBl70HNI21ZatqUmqzL_edlVvngLhx_M-PAidE5gRAHpdGzujPOUHaEIgTRNCOT9EE1CKJZJyeoxOQqgBQADICWqXbtsaXzWvOPcuhCR3XRP9DtsQq62JNmBX4rXztvnCeec_-o8uDNzgm8pX-dvGRlxUIfoq62LlGmz2Qb8BzgdsmgIXJppgYzhFR6XZBHv2807Ry-3qeXmfrJ_uHpaLdZIzRXmihASSMkGgUNxktMxySVgqSkaYKZRRzKpsLqUyEgrJuRViDtTMM0tNyplkU3Q55rbevXd9GV27zjf9SU2BMk6JUIO6GtW-s7elbn3f2u80AT3sqfs99bBnT5ORflYbu_vX6cfF6sdfjL4O_Qh_ngoBqeKKfQOpnoEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023521687</pqid></control><display><type>article</type><title>Comparing cross-country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets</title><source>Wiley Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Chang, Andrew C. ; Li, Phillip ; Martin, Shawn M.</creator><creatorcontrib>Chang, Andrew C. ; Li, Phillip ; Martin, Shawn M.</creatorcontrib><description>Chotikapanich and Griffiths (Journal of Business and Economic Statistics, 2002, 20(2), 290–295) introduced the Dirichlet distribution to the estimation of Lorenz curves. This distribution naturally accommodates the proportional nature of income share data and the dependence structure between the shares. Chotikapanich and Griffiths fit a family of five Lorenz curves to one year of Swedish and Brazilian income share data using unconstrained maximum likelihood and unconstrained nonlinear least squares. We attempt to replicate the authors’ results and extend their analyses using both constrained estimation techniques and five additional years of data. We successfully replicate a majority of the authors' results and find that some of their main qualitative conclusions also hold using our constrained estimators and additional data.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2595</identifier><language>eng</language><publisher>Chichester: Wiley (Variant)</publisher><subject>Dirichlet problem ; Econometrics ; Economic models ; Economic statistics ; Estimators ; Income ; Lorenz Curve ; Qualitative analysis ; REPLICATION</subject><ispartof>Journal of applied econometrics (Chichester, England), 2018-04, Vol.33 (3), p.473-478</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3825-8670193610d85ab2fbc71396f313ad8a83e8b4778a70d755e66402a4be2a95373</citedby><cites>FETCH-LOGICAL-c3825-8670193610d85ab2fbc71396f313ad8a83e8b4778a70d755e66402a4be2a95373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26609858$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26609858$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids></links><search><creatorcontrib>Chang, Andrew C.</creatorcontrib><creatorcontrib>Li, Phillip</creatorcontrib><creatorcontrib>Martin, Shawn M.</creatorcontrib><title>Comparing cross-country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets</title><title>Journal of applied econometrics (Chichester, England)</title><description>Chotikapanich and Griffiths (Journal of Business and Economic Statistics, 2002, 20(2), 290–295) introduced the Dirichlet distribution to the estimation of Lorenz curves. This distribution naturally accommodates the proportional nature of income share data and the dependence structure between the shares. Chotikapanich and Griffiths fit a family of five Lorenz curves to one year of Swedish and Brazilian income share data using unconstrained maximum likelihood and unconstrained nonlinear least squares. We attempt to replicate the authors’ results and extend their analyses using both constrained estimation techniques and five additional years of data. We successfully replicate a majority of the authors' results and find that some of their main qualitative conclusions also hold using our constrained estimators and additional data.</description><subject>Dirichlet problem</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Estimators</subject><subject>Income</subject><subject>Lorenz Curve</subject><subject>Qualitative analysis</subject><subject>REPLICATION</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10M1LwzAYBvAgCs4p-A8IAS9eOt8ky0ePY84vBl70HNI21ZatqUmqzL_edlVvngLhx_M-PAidE5gRAHpdGzujPOUHaEIgTRNCOT9EE1CKJZJyeoxOQqgBQADICWqXbtsaXzWvOPcuhCR3XRP9DtsQq62JNmBX4rXztvnCeec_-o8uDNzgm8pX-dvGRlxUIfoq62LlGmz2Qb8BzgdsmgIXJppgYzhFR6XZBHv2807Ry-3qeXmfrJ_uHpaLdZIzRXmihASSMkGgUNxktMxySVgqSkaYKZRRzKpsLqUyEgrJuRViDtTMM0tNyplkU3Q55rbevXd9GV27zjf9SU2BMk6JUIO6GtW-s7elbn3f2u80AT3sqfs99bBnT5ORflYbu_vX6cfF6sdfjL4O_Qh_ngoBqeKKfQOpnoEg</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Chang, Andrew C.</creator><creator>Li, Phillip</creator><creator>Martin, Shawn M.</creator><general>Wiley (Variant)</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201804</creationdate><title>Comparing cross-country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets</title><author>Chang, Andrew C. ; Li, Phillip ; Martin, Shawn M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3825-8670193610d85ab2fbc71396f313ad8a83e8b4778a70d755e66402a4be2a95373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dirichlet problem</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Estimators</topic><topic>Income</topic><topic>Lorenz Curve</topic><topic>Qualitative analysis</topic><topic>REPLICATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Andrew C.</creatorcontrib><creatorcontrib>Li, Phillip</creatorcontrib><creatorcontrib>Martin, Shawn M.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Andrew C.</au><au>Li, Phillip</au><au>Martin, Shawn M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing cross-country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2018-04</date><risdate>2018</risdate><volume>33</volume><issue>3</issue><spage>473</spage><epage>478</epage><pages>473-478</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Chotikapanich and Griffiths (Journal of Business and Economic Statistics, 2002, 20(2), 290–295) introduced the Dirichlet distribution to the estimation of Lorenz curves. This distribution naturally accommodates the proportional nature of income share data and the dependence structure between the shares. Chotikapanich and Griffiths fit a family of five Lorenz curves to one year of Swedish and Brazilian income share data using unconstrained maximum likelihood and unconstrained nonlinear least squares. We attempt to replicate the authors’ results and extend their analyses using both constrained estimation techniques and five additional years of data. We successfully replicate a majority of the authors' results and find that some of their main qualitative conclusions also hold using our constrained estimators and additional data.</abstract><cop>Chichester</cop><pub>Wiley (Variant)</pub><doi>10.1002/jae.2595</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2018-04, Vol.33 (3), p.473-478
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_2023521687
source Wiley Journals; JSTOR Archive Collection A-Z Listing
subjects Dirichlet problem
Econometrics
Economic models
Economic statistics
Estimators
Income
Lorenz Curve
Qualitative analysis
REPLICATION
title Comparing cross-country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20cross-country%20estimates%20of%20Lorenz%20curves%20using%20a%20Dirichlet%20distribution%20across%20estimators%20and%20datasets&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Chang,%20Andrew%20C.&rft.date=2018-04&rft.volume=33&rft.issue=3&rft.spage=473&rft.epage=478&rft.pages=473-478&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.2595&rft_dat=%3Cjstor_proqu%3E26609858%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023521687&rft_id=info:pmid/&rft_jstor_id=26609858&rfr_iscdi=true