A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems

Summary In this paper, we present a geometric multigrid methodology for the solution of matrix systems associated with isogeometric compatible discretizations of the generalized Stokes and Oseen problems. The methodology provably yields a pointwise divergence‐free velocity field independent of the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2018-05, Vol.25 (3), p.n/a
Hauptverfasser: Coley, Christopher, Benzaken, Joseph, Evans, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Numerical linear algebra with applications
container_volume 25
creator Coley, Christopher
Benzaken, Joseph
Evans, John A.
description Summary In this paper, we present a geometric multigrid methodology for the solution of matrix systems associated with isogeometric compatible discretizations of the generalized Stokes and Oseen problems. The methodology provably yields a pointwise divergence‐free velocity field independent of the number of pre‐smoothing steps, postsmoothing steps, grid levels, or cycles in a V‐cycle implementation, provided that the initial velocity guess is also divergence free. The methodology relies upon Scwharz‐style smoothers in conjunction with specially defined overlapping subdomains that respect the underlying topological structure of the generalized Stokes and Oseen problems. Numerical results in both two‐ and three‐dimensions demonstrate the robustness of the methodology through the invariance of convergence rates with respect to grid resolution and flow parameters for the generalized Stokes problem and the generalized Oseen problem, provided that it is not advection dominated.
doi_str_mv 10.1002/nla.2145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2023041931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023041931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-fcfba14c11fc547822f1f5e003bd41d9676b6008f4646fa36cbd1d478b8c62ca3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnSSbtHssxS8o9qCeQzYfberupiZbpP31plbw5CmT4ZkZeBG6JjAiAPSua9SIkpKfoAGBqioIB3F6qMdQcEb5ObpIaQ0AgldsgLZTvLShtX30GrfbpvfL6A3OjVUw2IWIfQp_Qod2o3pfNxYbn3S0vd_nf-gSDg73K5u3dTaqxu-twa99-LAJq87gRbK2w5sY8mibLtGZU02yV7_vEL0_3L_Nnor54vF5Np0XmlaMF067WpFSE-I0L8cTSh1x3AKw2pTEVGIsagEwcaUohVNM6NoQk2E90YJqxYbo5rg3H_7c2tTLddjGLp-UFCiDklSMZHV7VDqGlKJ1chN9q-JOEpCHUGUOVR5CzbQ40i_f2N2_Tr7Mpz_-G1tSelQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023041931</pqid></control><display><type>article</type><title>A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems</title><source>Wiley Online Library All Journals</source><creator>Coley, Christopher ; Benzaken, Joseph ; Evans, John A.</creator><creatorcontrib>Coley, Christopher ; Benzaken, Joseph ; Evans, John A.</creatorcontrib><description>Summary In this paper, we present a geometric multigrid methodology for the solution of matrix systems associated with isogeometric compatible discretizations of the generalized Stokes and Oseen problems. The methodology provably yields a pointwise divergence‐free velocity field independent of the number of pre‐smoothing steps, postsmoothing steps, grid levels, or cycles in a V‐cycle implementation, provided that the initial velocity guess is also divergence free. The methodology relies upon Scwharz‐style smoothers in conjunction with specially defined overlapping subdomains that respect the underlying topological structure of the generalized Stokes and Oseen problems. Numerical results in both two‐ and three‐dimensions demonstrate the robustness of the methodology through the invariance of convergence rates with respect to grid resolution and flow parameters for the generalized Stokes problem and the generalized Oseen problem, provided that it is not advection dominated.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2145</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Computational fluid dynamics ; Discretization ; Divergence ; generalized Oseen flow ; generalized Stokes flow ; geometric multigrid ; isogeometric compatible discretizations ; isogeometric divergence‐conforming discretizations ; Methodology ; overlapping Schwarz smoothers ; Robustness (mathematics) ; Stokes law (fluid mechanics) ; Velocity distribution</subject><ispartof>Numerical linear algebra with applications, 2018-05, Vol.25 (3), p.n/a</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-fcfba14c11fc547822f1f5e003bd41d9676b6008f4646fa36cbd1d478b8c62ca3</citedby><cites>FETCH-LOGICAL-c2935-fcfba14c11fc547822f1f5e003bd41d9676b6008f4646fa36cbd1d478b8c62ca3</cites><orcidid>0000-0001-7306-496X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.2145$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.2145$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Coley, Christopher</creatorcontrib><creatorcontrib>Benzaken, Joseph</creatorcontrib><creatorcontrib>Evans, John A.</creatorcontrib><title>A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems</title><title>Numerical linear algebra with applications</title><description>Summary In this paper, we present a geometric multigrid methodology for the solution of matrix systems associated with isogeometric compatible discretizations of the generalized Stokes and Oseen problems. The methodology provably yields a pointwise divergence‐free velocity field independent of the number of pre‐smoothing steps, postsmoothing steps, grid levels, or cycles in a V‐cycle implementation, provided that the initial velocity guess is also divergence free. The methodology relies upon Scwharz‐style smoothers in conjunction with specially defined overlapping subdomains that respect the underlying topological structure of the generalized Stokes and Oseen problems. Numerical results in both two‐ and three‐dimensions demonstrate the robustness of the methodology through the invariance of convergence rates with respect to grid resolution and flow parameters for the generalized Stokes problem and the generalized Oseen problem, provided that it is not advection dominated.</description><subject>Computational fluid dynamics</subject><subject>Discretization</subject><subject>Divergence</subject><subject>generalized Oseen flow</subject><subject>generalized Stokes flow</subject><subject>geometric multigrid</subject><subject>isogeometric compatible discretizations</subject><subject>isogeometric divergence‐conforming discretizations</subject><subject>Methodology</subject><subject>overlapping Schwarz smoothers</subject><subject>Robustness (mathematics)</subject><subject>Stokes law (fluid mechanics)</subject><subject>Velocity distribution</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnSSbtHssxS8o9qCeQzYfberupiZbpP31plbw5CmT4ZkZeBG6JjAiAPSua9SIkpKfoAGBqioIB3F6qMdQcEb5ObpIaQ0AgldsgLZTvLShtX30GrfbpvfL6A3OjVUw2IWIfQp_Qod2o3pfNxYbn3S0vd_nf-gSDg73K5u3dTaqxu-twa99-LAJq87gRbK2w5sY8mibLtGZU02yV7_vEL0_3L_Nnor54vF5Np0XmlaMF067WpFSE-I0L8cTSh1x3AKw2pTEVGIsagEwcaUohVNM6NoQk2E90YJqxYbo5rg3H_7c2tTLddjGLp-UFCiDklSMZHV7VDqGlKJ1chN9q-JOEpCHUGUOVR5CzbQ40i_f2N2_Tr7Mpz_-G1tSelQ</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Coley, Christopher</creator><creator>Benzaken, Joseph</creator><creator>Evans, John A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7306-496X</orcidid></search><sort><creationdate>201805</creationdate><title>A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems</title><author>Coley, Christopher ; Benzaken, Joseph ; Evans, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-fcfba14c11fc547822f1f5e003bd41d9676b6008f4646fa36cbd1d478b8c62ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational fluid dynamics</topic><topic>Discretization</topic><topic>Divergence</topic><topic>generalized Oseen flow</topic><topic>generalized Stokes flow</topic><topic>geometric multigrid</topic><topic>isogeometric compatible discretizations</topic><topic>isogeometric divergence‐conforming discretizations</topic><topic>Methodology</topic><topic>overlapping Schwarz smoothers</topic><topic>Robustness (mathematics)</topic><topic>Stokes law (fluid mechanics)</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coley, Christopher</creatorcontrib><creatorcontrib>Benzaken, Joseph</creatorcontrib><creatorcontrib>Evans, John A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coley, Christopher</au><au>Benzaken, Joseph</au><au>Evans, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2018-05</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>Summary In this paper, we present a geometric multigrid methodology for the solution of matrix systems associated with isogeometric compatible discretizations of the generalized Stokes and Oseen problems. The methodology provably yields a pointwise divergence‐free velocity field independent of the number of pre‐smoothing steps, postsmoothing steps, grid levels, or cycles in a V‐cycle implementation, provided that the initial velocity guess is also divergence free. The methodology relies upon Scwharz‐style smoothers in conjunction with specially defined overlapping subdomains that respect the underlying topological structure of the generalized Stokes and Oseen problems. Numerical results in both two‐ and three‐dimensions demonstrate the robustness of the methodology through the invariance of convergence rates with respect to grid resolution and flow parameters for the generalized Stokes problem and the generalized Oseen problem, provided that it is not advection dominated.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2145</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-7306-496X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2018-05, Vol.25 (3), p.n/a
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_journals_2023041931
source Wiley Online Library All Journals
subjects Computational fluid dynamics
Discretization
Divergence
generalized Oseen flow
generalized Stokes flow
geometric multigrid
isogeometric compatible discretizations
isogeometric divergence‐conforming discretizations
Methodology
overlapping Schwarz smoothers
Robustness (mathematics)
Stokes law (fluid mechanics)
Velocity distribution
title A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20geometric%20multigrid%20method%20for%20isogeometric%20compatible%20discretizations%20of%20the%20generalized%20Stokes%20and%20Oseen%20problems&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Coley,%20Christopher&rft.date=2018-05&rft.volume=25&rft.issue=3&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2145&rft_dat=%3Cproquest_cross%3E2023041931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023041931&rft_id=info:pmid/&rfr_iscdi=true