Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing
The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2018-05, Vol.57 (5), p.1356-1375 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1375 |
---|---|
container_issue | 5 |
container_start_page | 1356 |
container_title | International journal of theoretical physics |
container_volume | 57 |
creator | Bilal, Bisma Ahmed, Suhaib Kakkar, Vipan |
description | The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology. |
doi_str_mv | 10.1007/s10773-018-3664-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2022218854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022218854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-46756d2f0a992bf13b95ae28eb8ab677dfcdb443bdc33afccd69581c2cdbea273</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19F8tE16OaqbwnQo23VIk3R0dElNWsH9ejMmeOXVgcP7vIfzAHBL8D3BmD9EgjlnCBOBWFFk6HAGJiTnFJU5z8_BBGOKEeeZuARXMe4wxiXOxATsXr0ZOxXgzBgb4KON7dZFuImt28JVP7R71cEP-2VDbOvOQuUMnKuxG-DadzYoN8CFGmyErYPz1nYGVX7sO2vgezWDb8p57ff9OKS6a3DRqC7am985BZv507p6RsvV4qWaLZFmpBhQVvC8MLTBqixp3RBWl7myVNhaqLrg3DTa1FnGaqMZU43WpihzQTRNa6soZ1Nwd-rtg_8cbRzkzo_BpZOSYkopESLPUoqcUjr4GINtZB_Ss-FbEiyPSuVJqUxK5VGpPCSGnpiYsm5rw1_z_9APCqx7DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022218854</pqid></control><display><type>article</type><title>Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing</title><source>Springer Nature - Complete Springer Journals</source><creator>Bilal, Bisma ; Ahmed, Suhaib ; Kakkar, Vipan</creator><creatorcontrib>Bilal, Bisma ; Ahmed, Suhaib ; Kakkar, Vipan</creatorcontrib><description>The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-018-3664-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cellular automata ; Circuit design ; CMOS ; Design optimization ; Elementary Particles ; Fault tolerance ; Gates (circuits) ; Mathematical and Computational Physics ; Modular design ; Nanotechnology ; Physics ; Physics and Astronomy ; Quantum dots ; Quantum Field Theory ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2018-05, Vol.57 (5), p.1356-1375</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-46756d2f0a992bf13b95ae28eb8ab677dfcdb443bdc33afccd69581c2cdbea273</citedby><cites>FETCH-LOGICAL-c316t-46756d2f0a992bf13b95ae28eb8ab677dfcdb443bdc33afccd69581c2cdbea273</cites><orcidid>0000-0003-3496-8856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-018-3664-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-018-3664-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bilal, Bisma</creatorcontrib><creatorcontrib>Ahmed, Suhaib</creatorcontrib><creatorcontrib>Kakkar, Vipan</creatorcontrib><title>Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.</description><subject>Cellular automata</subject><subject>Circuit design</subject><subject>CMOS</subject><subject>Design optimization</subject><subject>Elementary Particles</subject><subject>Fault tolerance</subject><subject>Gates (circuits)</subject><subject>Mathematical and Computational Physics</subject><subject>Modular design</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum dots</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19F8tE16OaqbwnQo23VIk3R0dElNWsH9ejMmeOXVgcP7vIfzAHBL8D3BmD9EgjlnCBOBWFFk6HAGJiTnFJU5z8_BBGOKEeeZuARXMe4wxiXOxATsXr0ZOxXgzBgb4KON7dZFuImt28JVP7R71cEP-2VDbOvOQuUMnKuxG-DadzYoN8CFGmyErYPz1nYGVX7sO2vgezWDb8p57ff9OKS6a3DRqC7am985BZv507p6RsvV4qWaLZFmpBhQVvC8MLTBqixp3RBWl7myVNhaqLrg3DTa1FnGaqMZU43WpihzQTRNa6soZ1Nwd-rtg_8cbRzkzo_BpZOSYkopESLPUoqcUjr4GINtZB_Ss-FbEiyPSuVJqUxK5VGpPCSGnpiYsm5rw1_z_9APCqx7DQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Bilal, Bisma</creator><creator>Ahmed, Suhaib</creator><creator>Kakkar, Vipan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3496-8856</orcidid></search><sort><creationdate>20180501</creationdate><title>Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing</title><author>Bilal, Bisma ; Ahmed, Suhaib ; Kakkar, Vipan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-46756d2f0a992bf13b95ae28eb8ab677dfcdb443bdc33afccd69581c2cdbea273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cellular automata</topic><topic>Circuit design</topic><topic>CMOS</topic><topic>Design optimization</topic><topic>Elementary Particles</topic><topic>Fault tolerance</topic><topic>Gates (circuits)</topic><topic>Mathematical and Computational Physics</topic><topic>Modular design</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum dots</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilal, Bisma</creatorcontrib><creatorcontrib>Ahmed, Suhaib</creatorcontrib><creatorcontrib>Kakkar, Vipan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilal, Bisma</au><au>Ahmed, Suhaib</au><au>Kakkar, Vipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>57</volume><issue>5</issue><spage>1356</spage><epage>1375</epage><pages>1356-1375</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-018-3664-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3496-8856</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7748 |
ispartof | International journal of theoretical physics, 2018-05, Vol.57 (5), p.1356-1375 |
issn | 0020-7748 1572-9575 |
language | eng |
recordid | cdi_proquest_journals_2022218854 |
source | Springer Nature - Complete Springer Journals |
subjects | Cellular automata Circuit design CMOS Design optimization Elementary Particles Fault tolerance Gates (circuits) Mathematical and Computational Physics Modular design Nanotechnology Physics Physics and Astronomy Quantum dots Quantum Field Theory Quantum Physics Theoretical |
title | Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20Adder%20Designs%20Using%20Optimal%20Reversible%20and%20Fault%20Tolerant%20Gates%20in%20Field-Coupled%20QCA%20Nanocomputing&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Bilal,%20Bisma&rft.date=2018-05-01&rft.volume=57&rft.issue=5&rft.spage=1356&rft.epage=1375&rft.pages=1356-1375&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-018-3664-z&rft_dat=%3Cproquest_cross%3E2022218854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022218854&rft_id=info:pmid/&rfr_iscdi=true |