Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing

The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2018-05, Vol.57 (5), p.1356-1375
Hauptverfasser: Bilal, Bisma, Ahmed, Suhaib, Kakkar, Vipan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1375
container_issue 5
container_start_page 1356
container_title International journal of theoretical physics
container_volume 57
creator Bilal, Bisma
Ahmed, Suhaib
Kakkar, Vipan
description The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.
doi_str_mv 10.1007/s10773-018-3664-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2022218854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022218854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-46756d2f0a992bf13b95ae28eb8ab677dfcdb443bdc33afccd69581c2cdbea273</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19F8tE16OaqbwnQo23VIk3R0dElNWsH9ejMmeOXVgcP7vIfzAHBL8D3BmD9EgjlnCBOBWFFk6HAGJiTnFJU5z8_BBGOKEeeZuARXMe4wxiXOxATsXr0ZOxXgzBgb4KON7dZFuImt28JVP7R71cEP-2VDbOvOQuUMnKuxG-DadzYoN8CFGmyErYPz1nYGVX7sO2vgezWDb8p57ff9OKS6a3DRqC7am985BZv507p6RsvV4qWaLZFmpBhQVvC8MLTBqixp3RBWl7myVNhaqLrg3DTa1FnGaqMZU43WpihzQTRNa6soZ1Nwd-rtg_8cbRzkzo_BpZOSYkopESLPUoqcUjr4GINtZB_Ss-FbEiyPSuVJqUxK5VGpPCSGnpiYsm5rw1_z_9APCqx7DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022218854</pqid></control><display><type>article</type><title>Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing</title><source>Springer Nature - Complete Springer Journals</source><creator>Bilal, Bisma ; Ahmed, Suhaib ; Kakkar, Vipan</creator><creatorcontrib>Bilal, Bisma ; Ahmed, Suhaib ; Kakkar, Vipan</creatorcontrib><description>The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-018-3664-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cellular automata ; Circuit design ; CMOS ; Design optimization ; Elementary Particles ; Fault tolerance ; Gates (circuits) ; Mathematical and Computational Physics ; Modular design ; Nanotechnology ; Physics ; Physics and Astronomy ; Quantum dots ; Quantum Field Theory ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2018-05, Vol.57 (5), p.1356-1375</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-46756d2f0a992bf13b95ae28eb8ab677dfcdb443bdc33afccd69581c2cdbea273</citedby><cites>FETCH-LOGICAL-c316t-46756d2f0a992bf13b95ae28eb8ab677dfcdb443bdc33afccd69581c2cdbea273</cites><orcidid>0000-0003-3496-8856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-018-3664-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-018-3664-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bilal, Bisma</creatorcontrib><creatorcontrib>Ahmed, Suhaib</creatorcontrib><creatorcontrib>Kakkar, Vipan</creatorcontrib><title>Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.</description><subject>Cellular automata</subject><subject>Circuit design</subject><subject>CMOS</subject><subject>Design optimization</subject><subject>Elementary Particles</subject><subject>Fault tolerance</subject><subject>Gates (circuits)</subject><subject>Mathematical and Computational Physics</subject><subject>Modular design</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum dots</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19F8tE16OaqbwnQo23VIk3R0dElNWsH9ejMmeOXVgcP7vIfzAHBL8D3BmD9EgjlnCBOBWFFk6HAGJiTnFJU5z8_BBGOKEeeZuARXMe4wxiXOxATsXr0ZOxXgzBgb4KON7dZFuImt28JVP7R71cEP-2VDbOvOQuUMnKuxG-DadzYoN8CFGmyErYPz1nYGVX7sO2vgezWDb8p57ff9OKS6a3DRqC7am985BZv507p6RsvV4qWaLZFmpBhQVvC8MLTBqixp3RBWl7myVNhaqLrg3DTa1FnGaqMZU43WpihzQTRNa6soZ1Nwd-rtg_8cbRzkzo_BpZOSYkopESLPUoqcUjr4GINtZB_Ss-FbEiyPSuVJqUxK5VGpPCSGnpiYsm5rw1_z_9APCqx7DQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Bilal, Bisma</creator><creator>Ahmed, Suhaib</creator><creator>Kakkar, Vipan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3496-8856</orcidid></search><sort><creationdate>20180501</creationdate><title>Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing</title><author>Bilal, Bisma ; Ahmed, Suhaib ; Kakkar, Vipan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-46756d2f0a992bf13b95ae28eb8ab677dfcdb443bdc33afccd69581c2cdbea273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cellular automata</topic><topic>Circuit design</topic><topic>CMOS</topic><topic>Design optimization</topic><topic>Elementary Particles</topic><topic>Fault tolerance</topic><topic>Gates (circuits)</topic><topic>Mathematical and Computational Physics</topic><topic>Modular design</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum dots</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilal, Bisma</creatorcontrib><creatorcontrib>Ahmed, Suhaib</creatorcontrib><creatorcontrib>Kakkar, Vipan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilal, Bisma</au><au>Ahmed, Suhaib</au><au>Kakkar, Vipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>57</volume><issue>5</issue><spage>1356</spage><epage>1375</epage><pages>1356-1375</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-018-3664-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3496-8856</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2018-05, Vol.57 (5), p.1356-1375
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_2022218854
source Springer Nature - Complete Springer Journals
subjects Cellular automata
Circuit design
CMOS
Design optimization
Elementary Particles
Fault tolerance
Gates (circuits)
Mathematical and Computational Physics
Modular design
Nanotechnology
Physics
Physics and Astronomy
Quantum dots
Quantum Field Theory
Quantum Physics
Theoretical
title Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20Adder%20Designs%20Using%20Optimal%20Reversible%20and%20Fault%20Tolerant%20Gates%20in%20Field-Coupled%20QCA%20Nanocomputing&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Bilal,%20Bisma&rft.date=2018-05-01&rft.volume=57&rft.issue=5&rft.spage=1356&rft.epage=1375&rft.pages=1356-1375&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-018-3664-z&rft_dat=%3Cproquest_cross%3E2022218854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022218854&rft_id=info:pmid/&rfr_iscdi=true