Iron functionalization on graphene nanoflakes using thermal plasma for catalyst applications

[Display omitted] •A new technique produces non-noble metal catalysts for oxygen reduction reaction using a thermal plasma batch process.•The structure and composition of the catalysts were analysed to link experimental conditions andelectrocatalytic activity.•The performances of the resulting catal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. A, General General, 2016-11, Vol.528, p.36-43
Hauptverfasser: Legrand, U., Meunier, J.-L., Berk, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue
container_start_page 36
container_title Applied catalysis. A, General
container_volume 528
creator Legrand, U.
Meunier, J.-L.
Berk, D.
description [Display omitted] •A new technique produces non-noble metal catalysts for oxygen reduction reaction using a thermal plasma batch process.•The structure and composition of the catalysts were analysed to link experimental conditions andelectrocatalytic activity.•The performances of the resulting catalysts are improved when iron is added to the nitrogen functionalized graphene nanoflakes. Graphene nanoflakes (GNFs), a stack of 5–20 layers of graphene sheets, are generated here using methane decomposition in a thermal plasma followed by homogeneous nucleation of the 2-dimensional structures in the gas stream. The GNFs are functionalized with nitrogen and iron to improve their electrocatalytic activity. The iron functionalization step is carried out as a post-processing step within the same thermal plasma reactor used to grow the nanoparticles. Two different iron precursors are tested in the reactor, iron powder and iron (II) acetate solution. The iron source carried by a nitrogen flow is injected in the argon plasma, and parameters such as the plasma power, pressure, and the exposure time during functionalization are optimized for enhanced catalyst activity. Structure and composition of the resulting catalysts are characterized, and their electrocatalytic performances in terms of onset potential, half wave potential and current density show an increase compared to the non-functionalized GNFs. This study proves the ability to entirely produce a pure and highly crystalline graphene-based non-noble metal catalyst using a thermal plasma single batch process with simple precursors such as methane and nitrogen gas, and an iron powder or iron acetate solution.
doi_str_mv 10.1016/j.apcata.2016.09.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2022112307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X16304793</els_id><sourcerecordid>2022112307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-8ef8df4d5a08b1aa39af0e783b938c43d9ed59a20eaab22fd666a38d81ad23a53</originalsourceid><addsrcrecordid>eNp9kElLxEAQhRtRcBz9Bx4aPCf2kqVzEURcBga8KHgQmppeZjpm0rE7EcZfb2I8CwVVBa9e8T6ELilJKaHFdZ1Cp6CHlI1bSqqU0PwILagoecJFmR-jBalYkYiCvJ2isxhrQgjLqnyB3lfBt9gOreqdb6Fx3zANeKxtgG5nWoNbaL1t4MNEPETXbnG_M2EPDe4aiHvA1gc8vW8OscfQdY1TvybxHJ1YaKK5-OtL9Ppw_3L3lKyfH1d3t-tE8ZL2iTBWaJvpHIjYUABegSWmFHxTcaEyriuj8woYMQAbxqwuigK40IKCZhxyvkRXs28X_OdgYi9rP4QxTZSMMEYp46QcVdmsUsHHGIyVXXB7CAdJiZw4ylrOHOXEUZJKjhzHs5v5zIwJvpwJMipnWmW0C0b1Unv3v8EPGEiAIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022112307</pqid></control><display><type>article</type><title>Iron functionalization on graphene nanoflakes using thermal plasma for catalyst applications</title><source>Elsevier ScienceDirect Journals</source><creator>Legrand, U. ; Meunier, J.-L. ; Berk, D.</creator><creatorcontrib>Legrand, U. ; Meunier, J.-L. ; Berk, D.</creatorcontrib><description>[Display omitted] •A new technique produces non-noble metal catalysts for oxygen reduction reaction using a thermal plasma batch process.•The structure and composition of the catalysts were analysed to link experimental conditions andelectrocatalytic activity.•The performances of the resulting catalysts are improved when iron is added to the nitrogen functionalized graphene nanoflakes. Graphene nanoflakes (GNFs), a stack of 5–20 layers of graphene sheets, are generated here using methane decomposition in a thermal plasma followed by homogeneous nucleation of the 2-dimensional structures in the gas stream. The GNFs are functionalized with nitrogen and iron to improve their electrocatalytic activity. The iron functionalization step is carried out as a post-processing step within the same thermal plasma reactor used to grow the nanoparticles. Two different iron precursors are tested in the reactor, iron powder and iron (II) acetate solution. The iron source carried by a nitrogen flow is injected in the argon plasma, and parameters such as the plasma power, pressure, and the exposure time during functionalization are optimized for enhanced catalyst activity. Structure and composition of the resulting catalysts are characterized, and their electrocatalytic performances in terms of onset potential, half wave potential and current density show an increase compared to the non-functionalized GNFs. This study proves the ability to entirely produce a pure and highly crystalline graphene-based non-noble metal catalyst using a thermal plasma single batch process with simple precursors such as methane and nitrogen gas, and an iron powder or iron acetate solution.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/j.apcata.2016.09.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Argon plasma ; Catalysis ; Catalysts ; Decomposition ; Graphene ; Graphene nanoflakes ; Iron ; Methane ; Nanoparticles ; Nitrogen ; Noble metals ; Non-noble metal catalyst ; Post-processing ; Precursors ; Thermal plasma ; Thermal plasmas</subject><ispartof>Applied catalysis. A, General, 2016-11, Vol.528, p.36-43</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Science SA Nov 25, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-8ef8df4d5a08b1aa39af0e783b938c43d9ed59a20eaab22fd666a38d81ad23a53</citedby><cites>FETCH-LOGICAL-c371t-8ef8df4d5a08b1aa39af0e783b938c43d9ed59a20eaab22fd666a38d81ad23a53</cites><orcidid>0000-0003-1578-4090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926860X16304793$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Legrand, U.</creatorcontrib><creatorcontrib>Meunier, J.-L.</creatorcontrib><creatorcontrib>Berk, D.</creatorcontrib><title>Iron functionalization on graphene nanoflakes using thermal plasma for catalyst applications</title><title>Applied catalysis. A, General</title><description>[Display omitted] •A new technique produces non-noble metal catalysts for oxygen reduction reaction using a thermal plasma batch process.•The structure and composition of the catalysts were analysed to link experimental conditions andelectrocatalytic activity.•The performances of the resulting catalysts are improved when iron is added to the nitrogen functionalized graphene nanoflakes. Graphene nanoflakes (GNFs), a stack of 5–20 layers of graphene sheets, are generated here using methane decomposition in a thermal plasma followed by homogeneous nucleation of the 2-dimensional structures in the gas stream. The GNFs are functionalized with nitrogen and iron to improve their electrocatalytic activity. The iron functionalization step is carried out as a post-processing step within the same thermal plasma reactor used to grow the nanoparticles. Two different iron precursors are tested in the reactor, iron powder and iron (II) acetate solution. The iron source carried by a nitrogen flow is injected in the argon plasma, and parameters such as the plasma power, pressure, and the exposure time during functionalization are optimized for enhanced catalyst activity. Structure and composition of the resulting catalysts are characterized, and their electrocatalytic performances in terms of onset potential, half wave potential and current density show an increase compared to the non-functionalized GNFs. This study proves the ability to entirely produce a pure and highly crystalline graphene-based non-noble metal catalyst using a thermal plasma single batch process with simple precursors such as methane and nitrogen gas, and an iron powder or iron acetate solution.</description><subject>Argon plasma</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Decomposition</subject><subject>Graphene</subject><subject>Graphene nanoflakes</subject><subject>Iron</subject><subject>Methane</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>Noble metals</subject><subject>Non-noble metal catalyst</subject><subject>Post-processing</subject><subject>Precursors</subject><subject>Thermal plasma</subject><subject>Thermal plasmas</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kElLxEAQhRtRcBz9Bx4aPCf2kqVzEURcBga8KHgQmppeZjpm0rE7EcZfb2I8CwVVBa9e8T6ELilJKaHFdZ1Cp6CHlI1bSqqU0PwILagoecJFmR-jBalYkYiCvJ2isxhrQgjLqnyB3lfBt9gOreqdb6Fx3zANeKxtgG5nWoNbaL1t4MNEPETXbnG_M2EPDe4aiHvA1gc8vW8OscfQdY1TvybxHJ1YaKK5-OtL9Ppw_3L3lKyfH1d3t-tE8ZL2iTBWaJvpHIjYUABegSWmFHxTcaEyriuj8woYMQAbxqwuigK40IKCZhxyvkRXs28X_OdgYi9rP4QxTZSMMEYp46QcVdmsUsHHGIyVXXB7CAdJiZw4ylrOHOXEUZJKjhzHs5v5zIwJvpwJMipnWmW0C0b1Unv3v8EPGEiAIw</recordid><startdate>20161125</startdate><enddate>20161125</enddate><creator>Legrand, U.</creator><creator>Meunier, J.-L.</creator><creator>Berk, D.</creator><general>Elsevier B.V</general><general>Elsevier Science SA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1578-4090</orcidid></search><sort><creationdate>20161125</creationdate><title>Iron functionalization on graphene nanoflakes using thermal plasma for catalyst applications</title><author>Legrand, U. ; Meunier, J.-L. ; Berk, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-8ef8df4d5a08b1aa39af0e783b938c43d9ed59a20eaab22fd666a38d81ad23a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Argon plasma</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Decomposition</topic><topic>Graphene</topic><topic>Graphene nanoflakes</topic><topic>Iron</topic><topic>Methane</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>Noble metals</topic><topic>Non-noble metal catalyst</topic><topic>Post-processing</topic><topic>Precursors</topic><topic>Thermal plasma</topic><topic>Thermal plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Legrand, U.</creatorcontrib><creatorcontrib>Meunier, J.-L.</creatorcontrib><creatorcontrib>Berk, D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Legrand, U.</au><au>Meunier, J.-L.</au><au>Berk, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron functionalization on graphene nanoflakes using thermal plasma for catalyst applications</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2016-11-25</date><risdate>2016</risdate><volume>528</volume><spage>36</spage><epage>43</epage><pages>36-43</pages><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>[Display omitted] •A new technique produces non-noble metal catalysts for oxygen reduction reaction using a thermal plasma batch process.•The structure and composition of the catalysts were analysed to link experimental conditions andelectrocatalytic activity.•The performances of the resulting catalysts are improved when iron is added to the nitrogen functionalized graphene nanoflakes. Graphene nanoflakes (GNFs), a stack of 5–20 layers of graphene sheets, are generated here using methane decomposition in a thermal plasma followed by homogeneous nucleation of the 2-dimensional structures in the gas stream. The GNFs are functionalized with nitrogen and iron to improve their electrocatalytic activity. The iron functionalization step is carried out as a post-processing step within the same thermal plasma reactor used to grow the nanoparticles. Two different iron precursors are tested in the reactor, iron powder and iron (II) acetate solution. The iron source carried by a nitrogen flow is injected in the argon plasma, and parameters such as the plasma power, pressure, and the exposure time during functionalization are optimized for enhanced catalyst activity. Structure and composition of the resulting catalysts are characterized, and their electrocatalytic performances in terms of onset potential, half wave potential and current density show an increase compared to the non-functionalized GNFs. This study proves the ability to entirely produce a pure and highly crystalline graphene-based non-noble metal catalyst using a thermal plasma single batch process with simple precursors such as methane and nitrogen gas, and an iron powder or iron acetate solution.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcata.2016.09.015</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1578-4090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-860X
ispartof Applied catalysis. A, General, 2016-11, Vol.528, p.36-43
issn 0926-860X
1873-3875
language eng
recordid cdi_proquest_journals_2022112307
source Elsevier ScienceDirect Journals
subjects Argon plasma
Catalysis
Catalysts
Decomposition
Graphene
Graphene nanoflakes
Iron
Methane
Nanoparticles
Nitrogen
Noble metals
Non-noble metal catalyst
Post-processing
Precursors
Thermal plasma
Thermal plasmas
title Iron functionalization on graphene nanoflakes using thermal plasma for catalyst applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20functionalization%20on%20graphene%20nanoflakes%20using%20thermal%20plasma%20for%20catalyst%20applications&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Legrand,%20U.&rft.date=2016-11-25&rft.volume=528&rft.spage=36&rft.epage=43&rft.pages=36-43&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/j.apcata.2016.09.015&rft_dat=%3Cproquest_cross%3E2022112307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022112307&rft_id=info:pmid/&rft_els_id=S0926860X16304793&rfr_iscdi=true