Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen
[Display omitted] •A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3
Gespeichert in:
Veröffentlicht in: | Applied catalysis. A, General General, 2017-05, Vol.537, p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Applied catalysis. A, General |
container_volume | 537 |
creator | Li, Chao’en Wong, Lisa Tang, Liangguang Scarlett, Nicola V.Y. Chiang, Ken Patel, Jim Burke, Nick Sage, Valerie |
description | [Display omitted]
•A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3 |
doi_str_mv | 10.1016/j.apcata.2017.02.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2022103274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X17300881</els_id><sourcerecordid>2022103274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-6a6c21d2e6375365ac255e028f4f27c250cab1f28733efd0578a1781df37d3e73</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8t-ajbboXQRa_cEEEBW8hm7ysKW1T01Tcf2-WehYGHg9m5r0ZhC4pySmh1XWTq0GrqHJGqMgJS2BHaEFrwTNei_IYLciKVVldkY9TdDaODSGEFatygV6fXQ_Radx5A23r-h32FkfoBggqTgGyIfhdUF0HBgcwk47O9weO9lvVRux_nAG83ePPvUlM6M_RiVXtCBd_c4ne7-_e1o_Z5uXhaX27yTQXNGaVqjSjhkHFRcmrUmlWlkBYbQvLRFqIVltqWcrAwRpSilpRUVNjuTAcBF-iq9k3Pfg1wRhl46fQp5OSpfyUcCaKxCpmlg5-HANYOQTXqbCXlMhDebKRc3nyUJ4kLIEl2c0sg5Tg20GQo3bQazAugI7SePe_wS8Uc3oI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022103274</pqid></control><display><type>article</type><title>Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Chao’en ; Wong, Lisa ; Tang, Liangguang ; Scarlett, Nicola V.Y. ; Chiang, Ken ; Patel, Jim ; Burke, Nick ; Sage, Valerie</creator><creatorcontrib>Li, Chao’en ; Wong, Lisa ; Tang, Liangguang ; Scarlett, Nicola V.Y. ; Chiang, Ken ; Patel, Jim ; Burke, Nick ; Sage, Valerie</creatorcontrib><description>[Display omitted]
•A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3<Ru-Co/Al2O3 <Co/Al2O3.•High crystallinity increases the difficulty of reducing Co3O4 instead of intermediates.•The interaction between CoO and Al2O3 to form CoAl2O4 was modelled.
The reduction activities and mechanisms of cobalt-based catalysts are of great interest to industry and researchers, due to their applications in Fischer–Tropsch synthesis. Here, we investigated the reduction of alumina‐supported cobalt catalysts by hydrogen using temperature-programmed reduction. We propose a five-step reduction mechanism that incorporates both amorphous and crystalline Co3O4, and includes the interaction between CoO and the Al2O3 support. Based on our proposed mechanism, we developed a kinetic model of the reduction process. The modelling results of catalysts promoted with ruthenium and lanthanum in contrast with un-promoted catalyst clearly show that the promoter improves reducibility of the catalyst. The effect of Co3O4 crystallinity was also investigated by the reduction of fresh in comparison of pre-oxidised catalyst. We conclude that high crystallinity significantly increases the difficulty of reducing Co3O4. The interaction between CoO and Al2O3 under reduction conditions to form CoAl2O4 was quantitatively simulated. The kinetic modelling confirms that the support plays an important role in catalyst reduction via the interaction between the catalyst and the support. Those kinetic modelling results are supported by in situ X-ray diffraction studies of the reduction process.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/j.apcata.2017.02.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum oxide ; Catalysis ; Catalysts ; Chemical reactions ; Chemical synthesis ; Cobalt ; Cobalt aluminate ; Cobalt oxide ; Cobalt oxides ; Computer simulation ; Crystal structure ; Crystallinity ; Fischer-Tropsch process ; Fischer–Tropsch synthesis ; Kinetic modelling ; Lanthanum ; Modelling ; Reduction ; Reduction mechanism ; Ruthenium ; Studies ; Temperature-programmed reduction ; X-ray diffraction</subject><ispartof>Applied catalysis. A, General, 2017-05, Vol.537, p.1-11</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science SA May 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-6a6c21d2e6375365ac255e028f4f27c250cab1f28733efd0578a1781df37d3e73</citedby><cites>FETCH-LOGICAL-c371t-6a6c21d2e6375365ac255e028f4f27c250cab1f28733efd0578a1781df37d3e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926860X17300881$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Li, Chao’en</creatorcontrib><creatorcontrib>Wong, Lisa</creatorcontrib><creatorcontrib>Tang, Liangguang</creatorcontrib><creatorcontrib>Scarlett, Nicola V.Y.</creatorcontrib><creatorcontrib>Chiang, Ken</creatorcontrib><creatorcontrib>Patel, Jim</creatorcontrib><creatorcontrib>Burke, Nick</creatorcontrib><creatorcontrib>Sage, Valerie</creatorcontrib><title>Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen</title><title>Applied catalysis. A, General</title><description>[Display omitted]
•A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3<Ru-Co/Al2O3 <Co/Al2O3.•High crystallinity increases the difficulty of reducing Co3O4 instead of intermediates.•The interaction between CoO and Al2O3 to form CoAl2O4 was modelled.
The reduction activities and mechanisms of cobalt-based catalysts are of great interest to industry and researchers, due to their applications in Fischer–Tropsch synthesis. Here, we investigated the reduction of alumina‐supported cobalt catalysts by hydrogen using temperature-programmed reduction. We propose a five-step reduction mechanism that incorporates both amorphous and crystalline Co3O4, and includes the interaction between CoO and the Al2O3 support. Based on our proposed mechanism, we developed a kinetic model of the reduction process. The modelling results of catalysts promoted with ruthenium and lanthanum in contrast with un-promoted catalyst clearly show that the promoter improves reducibility of the catalyst. The effect of Co3O4 crystallinity was also investigated by the reduction of fresh in comparison of pre-oxidised catalyst. We conclude that high crystallinity significantly increases the difficulty of reducing Co3O4. The interaction between CoO and Al2O3 under reduction conditions to form CoAl2O4 was quantitatively simulated. The kinetic modelling confirms that the support plays an important role in catalyst reduction via the interaction between the catalyst and the support. Those kinetic modelling results are supported by in situ X-ray diffraction studies of the reduction process.</description><subject>Aluminum oxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Cobalt</subject><subject>Cobalt aluminate</subject><subject>Cobalt oxide</subject><subject>Cobalt oxides</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Fischer-Tropsch process</subject><subject>Fischer–Tropsch synthesis</subject><subject>Kinetic modelling</subject><subject>Lanthanum</subject><subject>Modelling</subject><subject>Reduction</subject><subject>Reduction mechanism</subject><subject>Ruthenium</subject><subject>Studies</subject><subject>Temperature-programmed reduction</subject><subject>X-ray diffraction</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8t-ajbboXQRa_cEEEBW8hm7ysKW1T01Tcf2-WehYGHg9m5r0ZhC4pySmh1XWTq0GrqHJGqMgJS2BHaEFrwTNei_IYLciKVVldkY9TdDaODSGEFatygV6fXQ_Radx5A23r-h32FkfoBggqTgGyIfhdUF0HBgcwk47O9weO9lvVRux_nAG83ePPvUlM6M_RiVXtCBd_c4ne7-_e1o_Z5uXhaX27yTQXNGaVqjSjhkHFRcmrUmlWlkBYbQvLRFqIVltqWcrAwRpSilpRUVNjuTAcBF-iq9k3Pfg1wRhl46fQp5OSpfyUcCaKxCpmlg5-HANYOQTXqbCXlMhDebKRc3nyUJ4kLIEl2c0sg5Tg20GQo3bQazAugI7SePe_wS8Uc3oI</recordid><startdate>20170505</startdate><enddate>20170505</enddate><creator>Li, Chao’en</creator><creator>Wong, Lisa</creator><creator>Tang, Liangguang</creator><creator>Scarlett, Nicola V.Y.</creator><creator>Chiang, Ken</creator><creator>Patel, Jim</creator><creator>Burke, Nick</creator><creator>Sage, Valerie</creator><general>Elsevier B.V</general><general>Elsevier Science SA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170505</creationdate><title>Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen</title><author>Li, Chao’en ; Wong, Lisa ; Tang, Liangguang ; Scarlett, Nicola V.Y. ; Chiang, Ken ; Patel, Jim ; Burke, Nick ; Sage, Valerie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-6a6c21d2e6375365ac255e028f4f27c250cab1f28733efd0578a1781df37d3e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Cobalt</topic><topic>Cobalt aluminate</topic><topic>Cobalt oxide</topic><topic>Cobalt oxides</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Fischer-Tropsch process</topic><topic>Fischer–Tropsch synthesis</topic><topic>Kinetic modelling</topic><topic>Lanthanum</topic><topic>Modelling</topic><topic>Reduction</topic><topic>Reduction mechanism</topic><topic>Ruthenium</topic><topic>Studies</topic><topic>Temperature-programmed reduction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao’en</creatorcontrib><creatorcontrib>Wong, Lisa</creatorcontrib><creatorcontrib>Tang, Liangguang</creatorcontrib><creatorcontrib>Scarlett, Nicola V.Y.</creatorcontrib><creatorcontrib>Chiang, Ken</creatorcontrib><creatorcontrib>Patel, Jim</creatorcontrib><creatorcontrib>Burke, Nick</creatorcontrib><creatorcontrib>Sage, Valerie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao’en</au><au>Wong, Lisa</au><au>Tang, Liangguang</au><au>Scarlett, Nicola V.Y.</au><au>Chiang, Ken</au><au>Patel, Jim</au><au>Burke, Nick</au><au>Sage, Valerie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2017-05-05</date><risdate>2017</risdate><volume>537</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>[Display omitted]
•A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3<Ru-Co/Al2O3 <Co/Al2O3.•High crystallinity increases the difficulty of reducing Co3O4 instead of intermediates.•The interaction between CoO and Al2O3 to form CoAl2O4 was modelled.
The reduction activities and mechanisms of cobalt-based catalysts are of great interest to industry and researchers, due to their applications in Fischer–Tropsch synthesis. Here, we investigated the reduction of alumina‐supported cobalt catalysts by hydrogen using temperature-programmed reduction. We propose a five-step reduction mechanism that incorporates both amorphous and crystalline Co3O4, and includes the interaction between CoO and the Al2O3 support. Based on our proposed mechanism, we developed a kinetic model of the reduction process. The modelling results of catalysts promoted with ruthenium and lanthanum in contrast with un-promoted catalyst clearly show that the promoter improves reducibility of the catalyst. The effect of Co3O4 crystallinity was also investigated by the reduction of fresh in comparison of pre-oxidised catalyst. We conclude that high crystallinity significantly increases the difficulty of reducing Co3O4. The interaction between CoO and Al2O3 under reduction conditions to form CoAl2O4 was quantitatively simulated. The kinetic modelling confirms that the support plays an important role in catalyst reduction via the interaction between the catalyst and the support. Those kinetic modelling results are supported by in situ X-ray diffraction studies of the reduction process.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcata.2017.02.022</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-860X |
ispartof | Applied catalysis. A, General, 2017-05, Vol.537, p.1-11 |
issn | 0926-860X 1873-3875 |
language | eng |
recordid | cdi_proquest_journals_2022103274 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aluminum oxide Catalysis Catalysts Chemical reactions Chemical synthesis Cobalt Cobalt aluminate Cobalt oxide Cobalt oxides Computer simulation Crystal structure Crystallinity Fischer-Tropsch process Fischer–Tropsch synthesis Kinetic modelling Lanthanum Modelling Reduction Reduction mechanism Ruthenium Studies Temperature-programmed reduction X-ray diffraction |
title | Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20modelling%20of%20temperature-programmed%20reduction%20of%20cobalt%20oxide%20by%20hydrogen&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Li,%20Chao%E2%80%99en&rft.date=2017-05-05&rft.volume=537&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/j.apcata.2017.02.022&rft_dat=%3Cproquest_cross%3E2022103274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022103274&rft_id=info:pmid/&rft_els_id=S0926860X17300881&rfr_iscdi=true |