Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen

[Display omitted] •A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. A, General General, 2017-05, Vol.537, p.1-11
Hauptverfasser: Li, Chao’en, Wong, Lisa, Tang, Liangguang, Scarlett, Nicola V.Y., Chiang, Ken, Patel, Jim, Burke, Nick, Sage, Valerie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Applied catalysis. A, General
container_volume 537
creator Li, Chao’en
Wong, Lisa
Tang, Liangguang
Scarlett, Nicola V.Y.
Chiang, Ken
Patel, Jim
Burke, Nick
Sage, Valerie
description [Display omitted] •A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3
doi_str_mv 10.1016/j.apcata.2017.02.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2022103274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X17300881</els_id><sourcerecordid>2022103274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-6a6c21d2e6375365ac255e028f4f27c250cab1f28733efd0578a1781df37d3e73</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8t-ajbboXQRa_cEEEBW8hm7ysKW1T01Tcf2-WehYGHg9m5r0ZhC4pySmh1XWTq0GrqHJGqMgJS2BHaEFrwTNei_IYLciKVVldkY9TdDaODSGEFatygV6fXQ_Radx5A23r-h32FkfoBggqTgGyIfhdUF0HBgcwk47O9weO9lvVRux_nAG83ePPvUlM6M_RiVXtCBd_c4ne7-_e1o_Z5uXhaX27yTQXNGaVqjSjhkHFRcmrUmlWlkBYbQvLRFqIVltqWcrAwRpSilpRUVNjuTAcBF-iq9k3Pfg1wRhl46fQp5OSpfyUcCaKxCpmlg5-HANYOQTXqbCXlMhDebKRc3nyUJ4kLIEl2c0sg5Tg20GQo3bQazAugI7SePe_wS8Uc3oI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022103274</pqid></control><display><type>article</type><title>Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Chao’en ; Wong, Lisa ; Tang, Liangguang ; Scarlett, Nicola V.Y. ; Chiang, Ken ; Patel, Jim ; Burke, Nick ; Sage, Valerie</creator><creatorcontrib>Li, Chao’en ; Wong, Lisa ; Tang, Liangguang ; Scarlett, Nicola V.Y. ; Chiang, Ken ; Patel, Jim ; Burke, Nick ; Sage, Valerie</creatorcontrib><description>[Display omitted] •A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3&lt;Ru-Co/Al2O3 &lt;Co/Al2O3.•High crystallinity increases the difficulty of reducing Co3O4 instead of intermediates.•The interaction between CoO and Al2O3 to form CoAl2O4 was modelled. The reduction activities and mechanisms of cobalt-based catalysts are of great interest to industry and researchers, due to their applications in Fischer–Tropsch synthesis. Here, we investigated the reduction of alumina‐supported cobalt catalysts by hydrogen using temperature-programmed reduction. We propose a five-step reduction mechanism that incorporates both amorphous and crystalline Co3O4, and includes the interaction between CoO and the Al2O3 support. Based on our proposed mechanism, we developed a kinetic model of the reduction process. The modelling results of catalysts promoted with ruthenium and lanthanum in contrast with un-promoted catalyst clearly show that the promoter improves reducibility of the catalyst. The effect of Co3O4 crystallinity was also investigated by the reduction of fresh in comparison of pre-oxidised catalyst. We conclude that high crystallinity significantly increases the difficulty of reducing Co3O4. The interaction between CoO and Al2O3 under reduction conditions to form CoAl2O4 was quantitatively simulated. The kinetic modelling confirms that the support plays an important role in catalyst reduction via the interaction between the catalyst and the support. Those kinetic modelling results are supported by in situ X-ray diffraction studies of the reduction process.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/j.apcata.2017.02.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum oxide ; Catalysis ; Catalysts ; Chemical reactions ; Chemical synthesis ; Cobalt ; Cobalt aluminate ; Cobalt oxide ; Cobalt oxides ; Computer simulation ; Crystal structure ; Crystallinity ; Fischer-Tropsch process ; Fischer–Tropsch synthesis ; Kinetic modelling ; Lanthanum ; Modelling ; Reduction ; Reduction mechanism ; Ruthenium ; Studies ; Temperature-programmed reduction ; X-ray diffraction</subject><ispartof>Applied catalysis. A, General, 2017-05, Vol.537, p.1-11</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science SA May 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-6a6c21d2e6375365ac255e028f4f27c250cab1f28733efd0578a1781df37d3e73</citedby><cites>FETCH-LOGICAL-c371t-6a6c21d2e6375365ac255e028f4f27c250cab1f28733efd0578a1781df37d3e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926860X17300881$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Li, Chao’en</creatorcontrib><creatorcontrib>Wong, Lisa</creatorcontrib><creatorcontrib>Tang, Liangguang</creatorcontrib><creatorcontrib>Scarlett, Nicola V.Y.</creatorcontrib><creatorcontrib>Chiang, Ken</creatorcontrib><creatorcontrib>Patel, Jim</creatorcontrib><creatorcontrib>Burke, Nick</creatorcontrib><creatorcontrib>Sage, Valerie</creatorcontrib><title>Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen</title><title>Applied catalysis. A, General</title><description>[Display omitted] •A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3&lt;Ru-Co/Al2O3 &lt;Co/Al2O3.•High crystallinity increases the difficulty of reducing Co3O4 instead of intermediates.•The interaction between CoO and Al2O3 to form CoAl2O4 was modelled. The reduction activities and mechanisms of cobalt-based catalysts are of great interest to industry and researchers, due to their applications in Fischer–Tropsch synthesis. Here, we investigated the reduction of alumina‐supported cobalt catalysts by hydrogen using temperature-programmed reduction. We propose a five-step reduction mechanism that incorporates both amorphous and crystalline Co3O4, and includes the interaction between CoO and the Al2O3 support. Based on our proposed mechanism, we developed a kinetic model of the reduction process. The modelling results of catalysts promoted with ruthenium and lanthanum in contrast with un-promoted catalyst clearly show that the promoter improves reducibility of the catalyst. The effect of Co3O4 crystallinity was also investigated by the reduction of fresh in comparison of pre-oxidised catalyst. We conclude that high crystallinity significantly increases the difficulty of reducing Co3O4. The interaction between CoO and Al2O3 under reduction conditions to form CoAl2O4 was quantitatively simulated. The kinetic modelling confirms that the support plays an important role in catalyst reduction via the interaction between the catalyst and the support. Those kinetic modelling results are supported by in situ X-ray diffraction studies of the reduction process.</description><subject>Aluminum oxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Cobalt</subject><subject>Cobalt aluminate</subject><subject>Cobalt oxide</subject><subject>Cobalt oxides</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Fischer-Tropsch process</subject><subject>Fischer–Tropsch synthesis</subject><subject>Kinetic modelling</subject><subject>Lanthanum</subject><subject>Modelling</subject><subject>Reduction</subject><subject>Reduction mechanism</subject><subject>Ruthenium</subject><subject>Studies</subject><subject>Temperature-programmed reduction</subject><subject>X-ray diffraction</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8t-ajbboXQRa_cEEEBW8hm7ysKW1T01Tcf2-WehYGHg9m5r0ZhC4pySmh1XWTq0GrqHJGqMgJS2BHaEFrwTNei_IYLciKVVldkY9TdDaODSGEFatygV6fXQ_Radx5A23r-h32FkfoBggqTgGyIfhdUF0HBgcwk47O9weO9lvVRux_nAG83ePPvUlM6M_RiVXtCBd_c4ne7-_e1o_Z5uXhaX27yTQXNGaVqjSjhkHFRcmrUmlWlkBYbQvLRFqIVltqWcrAwRpSilpRUVNjuTAcBF-iq9k3Pfg1wRhl46fQp5OSpfyUcCaKxCpmlg5-HANYOQTXqbCXlMhDebKRc3nyUJ4kLIEl2c0sg5Tg20GQo3bQazAugI7SePe_wS8Uc3oI</recordid><startdate>20170505</startdate><enddate>20170505</enddate><creator>Li, Chao’en</creator><creator>Wong, Lisa</creator><creator>Tang, Liangguang</creator><creator>Scarlett, Nicola V.Y.</creator><creator>Chiang, Ken</creator><creator>Patel, Jim</creator><creator>Burke, Nick</creator><creator>Sage, Valerie</creator><general>Elsevier B.V</general><general>Elsevier Science SA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170505</creationdate><title>Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen</title><author>Li, Chao’en ; Wong, Lisa ; Tang, Liangguang ; Scarlett, Nicola V.Y. ; Chiang, Ken ; Patel, Jim ; Burke, Nick ; Sage, Valerie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-6a6c21d2e6375365ac255e028f4f27c250cab1f28733efd0578a1781df37d3e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Cobalt</topic><topic>Cobalt aluminate</topic><topic>Cobalt oxide</topic><topic>Cobalt oxides</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Fischer-Tropsch process</topic><topic>Fischer–Tropsch synthesis</topic><topic>Kinetic modelling</topic><topic>Lanthanum</topic><topic>Modelling</topic><topic>Reduction</topic><topic>Reduction mechanism</topic><topic>Ruthenium</topic><topic>Studies</topic><topic>Temperature-programmed reduction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao’en</creatorcontrib><creatorcontrib>Wong, Lisa</creatorcontrib><creatorcontrib>Tang, Liangguang</creatorcontrib><creatorcontrib>Scarlett, Nicola V.Y.</creatorcontrib><creatorcontrib>Chiang, Ken</creatorcontrib><creatorcontrib>Patel, Jim</creatorcontrib><creatorcontrib>Burke, Nick</creatorcontrib><creatorcontrib>Sage, Valerie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao’en</au><au>Wong, Lisa</au><au>Tang, Liangguang</au><au>Scarlett, Nicola V.Y.</au><au>Chiang, Ken</au><au>Patel, Jim</au><au>Burke, Nick</au><au>Sage, Valerie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2017-05-05</date><risdate>2017</risdate><volume>537</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>[Display omitted] •A 5-steps reduction mechanism for Co3O4 was proposed.•The promoter improved the reducibility of Co3O4 while it had little effect on CoO.•Reduction difficulties follow the order: Ru-Co-La/Al2O3&lt;Ru-Co/Al2O3 &lt;Co/Al2O3.•High crystallinity increases the difficulty of reducing Co3O4 instead of intermediates.•The interaction between CoO and Al2O3 to form CoAl2O4 was modelled. The reduction activities and mechanisms of cobalt-based catalysts are of great interest to industry and researchers, due to their applications in Fischer–Tropsch synthesis. Here, we investigated the reduction of alumina‐supported cobalt catalysts by hydrogen using temperature-programmed reduction. We propose a five-step reduction mechanism that incorporates both amorphous and crystalline Co3O4, and includes the interaction between CoO and the Al2O3 support. Based on our proposed mechanism, we developed a kinetic model of the reduction process. The modelling results of catalysts promoted with ruthenium and lanthanum in contrast with un-promoted catalyst clearly show that the promoter improves reducibility of the catalyst. The effect of Co3O4 crystallinity was also investigated by the reduction of fresh in comparison of pre-oxidised catalyst. We conclude that high crystallinity significantly increases the difficulty of reducing Co3O4. The interaction between CoO and Al2O3 under reduction conditions to form CoAl2O4 was quantitatively simulated. The kinetic modelling confirms that the support plays an important role in catalyst reduction via the interaction between the catalyst and the support. Those kinetic modelling results are supported by in situ X-ray diffraction studies of the reduction process.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcata.2017.02.022</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-860X
ispartof Applied catalysis. A, General, 2017-05, Vol.537, p.1-11
issn 0926-860X
1873-3875
language eng
recordid cdi_proquest_journals_2022103274
source Elsevier ScienceDirect Journals Complete
subjects Aluminum oxide
Catalysis
Catalysts
Chemical reactions
Chemical synthesis
Cobalt
Cobalt aluminate
Cobalt oxide
Cobalt oxides
Computer simulation
Crystal structure
Crystallinity
Fischer-Tropsch process
Fischer–Tropsch synthesis
Kinetic modelling
Lanthanum
Modelling
Reduction
Reduction mechanism
Ruthenium
Studies
Temperature-programmed reduction
X-ray diffraction
title Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20modelling%20of%20temperature-programmed%20reduction%20of%20cobalt%20oxide%20by%20hydrogen&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Li,%20Chao%E2%80%99en&rft.date=2017-05-05&rft.volume=537&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/j.apcata.2017.02.022&rft_dat=%3Cproquest_cross%3E2022103274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022103274&rft_id=info:pmid/&rft_els_id=S0926860X17300881&rfr_iscdi=true