Effect of Radial–Shear Rolling on the Formation of Structure and Mechanical Properties of Al–Ni and Al–Ca Aluminum–Matrix Composite Alloys of Eutectic Type

Results of an analysis of the mechanical properties and macro- and microstructures and the fractographic analysis of the fractures of samples of the Al–6 wt % Ni and Al–7.6 wt % Ca aluminum–matrix composite alloys of eutectic type after thermomechanical treatment, including radial–shear rolling (RSR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of metals and metallography 2018-03, Vol.119 (3), p.241-250
Hauptverfasser: Akopyan, T. K., Aleshchenko, A. S., Belov, N. A., Galkin, S. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 3
container_start_page 241
container_title Physics of metals and metallography
container_volume 119
creator Akopyan, T. K.
Aleshchenko, A. S.
Belov, N. A.
Galkin, S. P.
description Results of an analysis of the mechanical properties and macro- and microstructures and the fractographic analysis of the fractures of samples of the Al–6 wt % Ni and Al–7.6 wt % Ca aluminum–matrix composite alloys of eutectic type after thermomechanical treatment, including radial–shear rolling (RSR),—have been presented. The hot deformation of preliminarily annealed ingots of studied alloys with a circular section 60 mm in diameter using RSR method at 400–450°C with total reduction μ = 9.0 can lead to the formation of the gradient microstructure with external more deformed layer characterized by high microhardness and thickness of about 1.5–2.5 mm. The microhardness decreases smoothly from the periphery to the center of samples. Uniaxial tensile tests revealed that the strength of alloys after RSR increases by 2.0–2.5 times compared to the as-cast or the annealed state, the plasticity is the same as in the annealed state or increases by several times as in the case of the Al–7.6 wt % Ca alloy. The latter fact is clearly illustrated by the results of the analysis of the fractures of samples, for which the transition from the brittle or mixed type of the fracture before deformation treatment to the pronounced ductile dimpled type after RSR has been observed.
doi_str_mv 10.1134/S0031918X18010039
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2022085220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541288904</galeid><sourcerecordid>A541288904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4751bc73a0364341760c3f4ca01e4654682f23ad4595a64cadc6de234e35e7c63</originalsourceid><addsrcrecordid>eNp1kc1q3DAQx0VoIdu0D5CboGenkvWx9nFZNmkgaUs2gdyMKo92FWzJkWTo3vIOfYS8WZ6k8m6ghxAEmq_ff2ZgEDql5IxSxr-tCWG0ptU9rQjNfn2EZlQIUUhakw9oNpWLqX6MPsX4QAjnXLIZel4ZAzphb_CNaq3qXp7-rregAr7xXWfdBnuH0xbwuQ-9SjZHGV2nMOo0BsDKtfga9FY5q1WHfwU_QEgW4oQtpm4_7B7a-0uV7dhbN_Y5ulYp2D946fvBR5sg1zq_2ytXY8pbWY1vdwN8Rh-N6iJ8ebUn6O58dbv8Xlz9vLhcLq4KzQlLBZ8L-lvPmSJMcsbpXBLNDNeKUOBScFmVpmSq5aIWSuZ8q2ULJePABMy1ZCfo66HvEPzjCDE1D34MLo9sSlKWpBL5y9TZgdqoDhrrjE9B6fxa6K32DozN-YXgtKyqmvAsoAeBDj7GAKYZgu1V2DWUNNPxmjfHy5ryoImZdRsI_1d5X_QPllefpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022085220</pqid></control><display><type>article</type><title>Effect of Radial–Shear Rolling on the Formation of Structure and Mechanical Properties of Al–Ni and Al–Ca Aluminum–Matrix Composite Alloys of Eutectic Type</title><source>Springer Nature - Complete Springer Journals</source><creator>Akopyan, T. K. ; Aleshchenko, A. S. ; Belov, N. A. ; Galkin, S. P.</creator><creatorcontrib>Akopyan, T. K. ; Aleshchenko, A. S. ; Belov, N. A. ; Galkin, S. P.</creatorcontrib><description>Results of an analysis of the mechanical properties and macro- and microstructures and the fractographic analysis of the fractures of samples of the Al–6 wt % Ni and Al–7.6 wt % Ca aluminum–matrix composite alloys of eutectic type after thermomechanical treatment, including radial–shear rolling (RSR),—have been presented. The hot deformation of preliminarily annealed ingots of studied alloys with a circular section 60 mm in diameter using RSR method at 400–450°C with total reduction μ = 9.0 can lead to the formation of the gradient microstructure with external more deformed layer characterized by high microhardness and thickness of about 1.5–2.5 mm. The microhardness decreases smoothly from the periphery to the center of samples. Uniaxial tensile tests revealed that the strength of alloys after RSR increases by 2.0–2.5 times compared to the as-cast or the annealed state, the plasticity is the same as in the annealed state or increases by several times as in the case of the Al–7.6 wt % Ca alloy. The latter fact is clearly illustrated by the results of the analysis of the fractures of samples, for which the transition from the brittle or mixed type of the fracture before deformation treatment to the pronounced ductile dimpled type after RSR has been observed.</description><identifier>ISSN: 0031-918X</identifier><identifier>EISSN: 1555-6190</identifier><identifier>DOI: 10.1134/S0031918X18010039</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum alloys ; Aluminum matrix composites ; Analysis ; Annealing ; Chemistry and Materials Science ; Deformation ; Diffusion ; Dimpling ; Ductile fracture ; Ductile-brittle transition ; Fracture mechanics ; Hardness (Materials) ; Ingot casting ; Materials Science ; Mechanical properties ; Metallic Materials ; Microhardness ; Nickel ; Phase Transformations ; Specialty metals industry ; Structure ; Tensile tests ; Thermomechanical treatment ; Thickness</subject><ispartof>Physics of metals and metallography, 2018-03, Vol.119 (3), p.241-250</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Physics of Metals and Metallography is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-4751bc73a0364341760c3f4ca01e4654682f23ad4595a64cadc6de234e35e7c63</citedby><cites>FETCH-LOGICAL-c403t-4751bc73a0364341760c3f4ca01e4654682f23ad4595a64cadc6de234e35e7c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0031918X18010039$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0031918X18010039$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Akopyan, T. K.</creatorcontrib><creatorcontrib>Aleshchenko, A. S.</creatorcontrib><creatorcontrib>Belov, N. A.</creatorcontrib><creatorcontrib>Galkin, S. P.</creatorcontrib><title>Effect of Radial–Shear Rolling on the Formation of Structure and Mechanical Properties of Al–Ni and Al–Ca Aluminum–Matrix Composite Alloys of Eutectic Type</title><title>Physics of metals and metallography</title><addtitle>Phys. Metals Metallogr</addtitle><description>Results of an analysis of the mechanical properties and macro- and microstructures and the fractographic analysis of the fractures of samples of the Al–6 wt % Ni and Al–7.6 wt % Ca aluminum–matrix composite alloys of eutectic type after thermomechanical treatment, including radial–shear rolling (RSR),—have been presented. The hot deformation of preliminarily annealed ingots of studied alloys with a circular section 60 mm in diameter using RSR method at 400–450°C with total reduction μ = 9.0 can lead to the formation of the gradient microstructure with external more deformed layer characterized by high microhardness and thickness of about 1.5–2.5 mm. The microhardness decreases smoothly from the periphery to the center of samples. Uniaxial tensile tests revealed that the strength of alloys after RSR increases by 2.0–2.5 times compared to the as-cast or the annealed state, the plasticity is the same as in the annealed state or increases by several times as in the case of the Al–7.6 wt % Ca alloy. The latter fact is clearly illustrated by the results of the analysis of the fractures of samples, for which the transition from the brittle or mixed type of the fracture before deformation treatment to the pronounced ductile dimpled type after RSR has been observed.</description><subject>Aluminum alloys</subject><subject>Aluminum matrix composites</subject><subject>Analysis</subject><subject>Annealing</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Diffusion</subject><subject>Dimpling</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Fracture mechanics</subject><subject>Hardness (Materials)</subject><subject>Ingot casting</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Nickel</subject><subject>Phase Transformations</subject><subject>Specialty metals industry</subject><subject>Structure</subject><subject>Tensile tests</subject><subject>Thermomechanical treatment</subject><subject>Thickness</subject><issn>0031-918X</issn><issn>1555-6190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kc1q3DAQx0VoIdu0D5CboGenkvWx9nFZNmkgaUs2gdyMKo92FWzJkWTo3vIOfYS8WZ6k8m6ghxAEmq_ff2ZgEDql5IxSxr-tCWG0ptU9rQjNfn2EZlQIUUhakw9oNpWLqX6MPsX4QAjnXLIZel4ZAzphb_CNaq3qXp7-rregAr7xXWfdBnuH0xbwuQ-9SjZHGV2nMOo0BsDKtfga9FY5q1WHfwU_QEgW4oQtpm4_7B7a-0uV7dhbN_Y5ulYp2D946fvBR5sg1zq_2ytXY8pbWY1vdwN8Rh-N6iJ8ebUn6O58dbv8Xlz9vLhcLq4KzQlLBZ8L-lvPmSJMcsbpXBLNDNeKUOBScFmVpmSq5aIWSuZ8q2ULJePABMy1ZCfo66HvEPzjCDE1D34MLo9sSlKWpBL5y9TZgdqoDhrrjE9B6fxa6K32DozN-YXgtKyqmvAsoAeBDj7GAKYZgu1V2DWUNNPxmjfHy5ryoImZdRsI_1d5X_QPllefpg</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Akopyan, T. K.</creator><creator>Aleshchenko, A. S.</creator><creator>Belov, N. A.</creator><creator>Galkin, S. P.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180301</creationdate><title>Effect of Radial–Shear Rolling on the Formation of Structure and Mechanical Properties of Al–Ni and Al–Ca Aluminum–Matrix Composite Alloys of Eutectic Type</title><author>Akopyan, T. K. ; Aleshchenko, A. S. ; Belov, N. A. ; Galkin, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4751bc73a0364341760c3f4ca01e4654682f23ad4595a64cadc6de234e35e7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum alloys</topic><topic>Aluminum matrix composites</topic><topic>Analysis</topic><topic>Annealing</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Diffusion</topic><topic>Dimpling</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Fracture mechanics</topic><topic>Hardness (Materials)</topic><topic>Ingot casting</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Nickel</topic><topic>Phase Transformations</topic><topic>Specialty metals industry</topic><topic>Structure</topic><topic>Tensile tests</topic><topic>Thermomechanical treatment</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akopyan, T. K.</creatorcontrib><creatorcontrib>Aleshchenko, A. S.</creatorcontrib><creatorcontrib>Belov, N. A.</creatorcontrib><creatorcontrib>Galkin, S. P.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Physics of metals and metallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akopyan, T. K.</au><au>Aleshchenko, A. S.</au><au>Belov, N. A.</au><au>Galkin, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Radial–Shear Rolling on the Formation of Structure and Mechanical Properties of Al–Ni and Al–Ca Aluminum–Matrix Composite Alloys of Eutectic Type</atitle><jtitle>Physics of metals and metallography</jtitle><stitle>Phys. Metals Metallogr</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>119</volume><issue>3</issue><spage>241</spage><epage>250</epage><pages>241-250</pages><issn>0031-918X</issn><eissn>1555-6190</eissn><abstract>Results of an analysis of the mechanical properties and macro- and microstructures and the fractographic analysis of the fractures of samples of the Al–6 wt % Ni and Al–7.6 wt % Ca aluminum–matrix composite alloys of eutectic type after thermomechanical treatment, including radial–shear rolling (RSR),—have been presented. The hot deformation of preliminarily annealed ingots of studied alloys with a circular section 60 mm in diameter using RSR method at 400–450°C with total reduction μ = 9.0 can lead to the formation of the gradient microstructure with external more deformed layer characterized by high microhardness and thickness of about 1.5–2.5 mm. The microhardness decreases smoothly from the periphery to the center of samples. Uniaxial tensile tests revealed that the strength of alloys after RSR increases by 2.0–2.5 times compared to the as-cast or the annealed state, the plasticity is the same as in the annealed state or increases by several times as in the case of the Al–7.6 wt % Ca alloy. The latter fact is clearly illustrated by the results of the analysis of the fractures of samples, for which the transition from the brittle or mixed type of the fracture before deformation treatment to the pronounced ductile dimpled type after RSR has been observed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0031918X18010039</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-918X
ispartof Physics of metals and metallography, 2018-03, Vol.119 (3), p.241-250
issn 0031-918X
1555-6190
language eng
recordid cdi_proquest_journals_2022085220
source Springer Nature - Complete Springer Journals
subjects Aluminum alloys
Aluminum matrix composites
Analysis
Annealing
Chemistry and Materials Science
Deformation
Diffusion
Dimpling
Ductile fracture
Ductile-brittle transition
Fracture mechanics
Hardness (Materials)
Ingot casting
Materials Science
Mechanical properties
Metallic Materials
Microhardness
Nickel
Phase Transformations
Specialty metals industry
Structure
Tensile tests
Thermomechanical treatment
Thickness
title Effect of Radial–Shear Rolling on the Formation of Structure and Mechanical Properties of Al–Ni and Al–Ca Aluminum–Matrix Composite Alloys of Eutectic Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Radial%E2%80%93Shear%20Rolling%20on%20the%20Formation%20of%20Structure%20and%20Mechanical%20Properties%20of%20Al%E2%80%93Ni%20and%20Al%E2%80%93Ca%20Aluminum%E2%80%93Matrix%20Composite%20Alloys%20of%20Eutectic%20Type&rft.jtitle=Physics%20of%20metals%20and%20metallography&rft.au=Akopyan,%20T.%20K.&rft.date=2018-03-01&rft.volume=119&rft.issue=3&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.issn=0031-918X&rft.eissn=1555-6190&rft_id=info:doi/10.1134/S0031918X18010039&rft_dat=%3Cgale_proqu%3EA541288904%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022085220&rft_id=info:pmid/&rft_galeid=A541288904&rfr_iscdi=true