Grey-box model identification of temperature dynamics in a photobioreactor

•A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated. This article pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2017-05, Vol.121, p.125-133
Hauptverfasser: Jiménez-González, A., Adam-Medina, M., Franco-Nava, M.A., Guerrero-Ramírez, G.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue
container_start_page 125
container_title Chemical engineering research & design
container_volume 121
creator Jiménez-González, A.
Adam-Medina, M.
Franco-Nava, M.A.
Guerrero-Ramírez, G.V.
description •A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated. This article presents a general strategy for grey-box model identification and deals with some issues that might be present in real life applications. An Unscented Kalman Filter (UKF) is used to train a grey-box temperature model with experimental data from an internally illuminated photobioreactor. The model structure is derived by means of heat balance analysis with the aid of a heat flow diagram. Then, the model is discretized and given an alternative state space representation in such a way that parameters can be readily estimated with an UKF. In order to avoid performance degradation and to improve the stability of the UKF algorithm, the prediction error covariance matrix is estimated and the state covariance matrix square root is calculated with a method based on Schur spectral decomposition to ensure positive semi-definiteness.
doi_str_mv 10.1016/j.cherd.2017.03.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021989270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876217301375</els_id><sourcerecordid>2021989270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c9f6fb0ae4c3a3baf87054907cc60de6fa2632cacfc177861dacb9e11f67b4c83</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjF7BEYk44x6mdDAyoggKqxAKz5VzOqqMmLraL6L8npcxMt7zPe3cPYzccCg5c3vUFril0RQlcFSAKgOqEzbiqqlzMpThlMyilyGsly3N2EWMPMCWresZel4H2eeu_s8F3tMlcR2Ny1qFJzo-Zt1miYUvBpF2grNuPZnAYMzdmJtuuffKt84EMJh-u2Jk1m0jXf_OSfTw9vi-e89Xb8mXxsMpRyDrl2FhpWzBUoTCiNbZWMK8aUIgSOpLWTKeWaNAiV6qWvDPYNsS5laqtsBaX7PbYuw3-c0cx6d7vwjit1CWUvKmbUsGUEscUBh9jIKu3wQ0m7DUHfZCme_0rTR-kaRB6kjZR90eKpge-HAUd0dGI1LlAmHTn3b_8D4Jnd58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021989270</pqid></control><display><type>article</type><title>Grey-box model identification of temperature dynamics in a photobioreactor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jiménez-González, A. ; Adam-Medina, M. ; Franco-Nava, M.A. ; Guerrero-Ramírez, G.V.</creator><creatorcontrib>Jiménez-González, A. ; Adam-Medina, M. ; Franco-Nava, M.A. ; Guerrero-Ramírez, G.V.</creatorcontrib><description>•A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated. This article presents a general strategy for grey-box model identification and deals with some issues that might be present in real life applications. An Unscented Kalman Filter (UKF) is used to train a grey-box temperature model with experimental data from an internally illuminated photobioreactor. The model structure is derived by means of heat balance analysis with the aid of a heat flow diagram. Then, the model is discretized and given an alternative state space representation in such a way that parameters can be readily estimated with an UKF. In order to avoid performance degradation and to improve the stability of the UKF algorithm, the prediction error covariance matrix is estimated and the state covariance matrix square root is calculated with a method based on Schur spectral decomposition to ensure positive semi-definiteness.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2017.03.004</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Covariance matrix ; Decomposition ; Grey-box model ; Heat balance ; Heat transmission ; Internally illuminated photobioreactor ; Kalman filters ; Mathematical models ; Parameter estimation ; Performance degradation ; State space models ; Unscented Kalman Filter</subject><ispartof>Chemical engineering research &amp; design, 2017-05, Vol.121, p.125-133</ispartof><rights>2017 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. May 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c9f6fb0ae4c3a3baf87054907cc60de6fa2632cacfc177861dacb9e11f67b4c83</citedby><cites>FETCH-LOGICAL-c368t-c9f6fb0ae4c3a3baf87054907cc60de6fa2632cacfc177861dacb9e11f67b4c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2017.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jiménez-González, A.</creatorcontrib><creatorcontrib>Adam-Medina, M.</creatorcontrib><creatorcontrib>Franco-Nava, M.A.</creatorcontrib><creatorcontrib>Guerrero-Ramírez, G.V.</creatorcontrib><title>Grey-box model identification of temperature dynamics in a photobioreactor</title><title>Chemical engineering research &amp; design</title><description>•A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated. This article presents a general strategy for grey-box model identification and deals with some issues that might be present in real life applications. An Unscented Kalman Filter (UKF) is used to train a grey-box temperature model with experimental data from an internally illuminated photobioreactor. The model structure is derived by means of heat balance analysis with the aid of a heat flow diagram. Then, the model is discretized and given an alternative state space representation in such a way that parameters can be readily estimated with an UKF. In order to avoid performance degradation and to improve the stability of the UKF algorithm, the prediction error covariance matrix is estimated and the state covariance matrix square root is calculated with a method based on Schur spectral decomposition to ensure positive semi-definiteness.</description><subject>Covariance matrix</subject><subject>Decomposition</subject><subject>Grey-box model</subject><subject>Heat balance</subject><subject>Heat transmission</subject><subject>Internally illuminated photobioreactor</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Performance degradation</subject><subject>State space models</subject><subject>Unscented Kalman Filter</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjF7BEYk44x6mdDAyoggKqxAKz5VzOqqMmLraL6L8npcxMt7zPe3cPYzccCg5c3vUFril0RQlcFSAKgOqEzbiqqlzMpThlMyilyGsly3N2EWMPMCWresZel4H2eeu_s8F3tMlcR2Ny1qFJzo-Zt1miYUvBpF2grNuPZnAYMzdmJtuuffKt84EMJh-u2Jk1m0jXf_OSfTw9vi-e89Xb8mXxsMpRyDrl2FhpWzBUoTCiNbZWMK8aUIgSOpLWTKeWaNAiV6qWvDPYNsS5laqtsBaX7PbYuw3-c0cx6d7vwjit1CWUvKmbUsGUEscUBh9jIKu3wQ0m7DUHfZCme_0rTR-kaRB6kjZR90eKpge-HAUd0dGI1LlAmHTn3b_8D4Jnd58</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Jiménez-González, A.</creator><creator>Adam-Medina, M.</creator><creator>Franco-Nava, M.A.</creator><creator>Guerrero-Ramírez, G.V.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170501</creationdate><title>Grey-box model identification of temperature dynamics in a photobioreactor</title><author>Jiménez-González, A. ; Adam-Medina, M. ; Franco-Nava, M.A. ; Guerrero-Ramírez, G.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c9f6fb0ae4c3a3baf87054907cc60de6fa2632cacfc177861dacb9e11f67b4c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Covariance matrix</topic><topic>Decomposition</topic><topic>Grey-box model</topic><topic>Heat balance</topic><topic>Heat transmission</topic><topic>Internally illuminated photobioreactor</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Performance degradation</topic><topic>State space models</topic><topic>Unscented Kalman Filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-González, A.</creatorcontrib><creatorcontrib>Adam-Medina, M.</creatorcontrib><creatorcontrib>Franco-Nava, M.A.</creatorcontrib><creatorcontrib>Guerrero-Ramírez, G.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-González, A.</au><au>Adam-Medina, M.</au><au>Franco-Nava, M.A.</au><au>Guerrero-Ramírez, G.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grey-box model identification of temperature dynamics in a photobioreactor</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>121</volume><spage>125</spage><epage>133</epage><pages>125-133</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>•A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated. This article presents a general strategy for grey-box model identification and deals with some issues that might be present in real life applications. An Unscented Kalman Filter (UKF) is used to train a grey-box temperature model with experimental data from an internally illuminated photobioreactor. The model structure is derived by means of heat balance analysis with the aid of a heat flow diagram. Then, the model is discretized and given an alternative state space representation in such a way that parameters can be readily estimated with an UKF. In order to avoid performance degradation and to improve the stability of the UKF algorithm, the prediction error covariance matrix is estimated and the state covariance matrix square root is calculated with a method based on Schur spectral decomposition to ensure positive semi-definiteness.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2017.03.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2017-05, Vol.121, p.125-133
issn 0263-8762
1744-3563
language eng
recordid cdi_proquest_journals_2021989270
source Elsevier ScienceDirect Journals Complete
subjects Covariance matrix
Decomposition
Grey-box model
Heat balance
Heat transmission
Internally illuminated photobioreactor
Kalman filters
Mathematical models
Parameter estimation
Performance degradation
State space models
Unscented Kalman Filter
title Grey-box model identification of temperature dynamics in a photobioreactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grey-box%20model%20identification%20of%20temperature%20dynamics%20in%20a%20photobioreactor&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Jim%C3%A9nez-Gonz%C3%A1lez,%20A.&rft.date=2017-05-01&rft.volume=121&rft.spage=125&rft.epage=133&rft.pages=125-133&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2017.03.004&rft_dat=%3Cproquest_cross%3E2021989270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021989270&rft_id=info:pmid/&rft_els_id=S0263876217301375&rfr_iscdi=true