Grey-box model identification of temperature dynamics in a photobioreactor
•A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated. This article pr...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2017-05, Vol.121, p.125-133 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | |
container_start_page | 125 |
container_title | Chemical engineering research & design |
container_volume | 121 |
creator | Jiménez-González, A. Adam-Medina, M. Franco-Nava, M.A. Guerrero-Ramírez, G.V. |
description | •A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated.
This article presents a general strategy for grey-box model identification and deals with some issues that might be present in real life applications. An Unscented Kalman Filter (UKF) is used to train a grey-box temperature model with experimental data from an internally illuminated photobioreactor. The model structure is derived by means of heat balance analysis with the aid of a heat flow diagram. Then, the model is discretized and given an alternative state space representation in such a way that parameters can be readily estimated with an UKF. In order to avoid performance degradation and to improve the stability of the UKF algorithm, the prediction error covariance matrix is estimated and the state covariance matrix square root is calculated with a method based on Schur spectral decomposition to ensure positive semi-definiteness. |
doi_str_mv | 10.1016/j.cherd.2017.03.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021989270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876217301375</els_id><sourcerecordid>2021989270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c9f6fb0ae4c3a3baf87054907cc60de6fa2632cacfc177861dacb9e11f67b4c83</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjF7BEYk44x6mdDAyoggKqxAKz5VzOqqMmLraL6L8npcxMt7zPe3cPYzccCg5c3vUFril0RQlcFSAKgOqEzbiqqlzMpThlMyilyGsly3N2EWMPMCWresZel4H2eeu_s8F3tMlcR2Ny1qFJzo-Zt1miYUvBpF2grNuPZnAYMzdmJtuuffKt84EMJh-u2Jk1m0jXf_OSfTw9vi-e89Xb8mXxsMpRyDrl2FhpWzBUoTCiNbZWMK8aUIgSOpLWTKeWaNAiV6qWvDPYNsS5laqtsBaX7PbYuw3-c0cx6d7vwjit1CWUvKmbUsGUEscUBh9jIKu3wQ0m7DUHfZCme_0rTR-kaRB6kjZR90eKpge-HAUd0dGI1LlAmHTn3b_8D4Jnd58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021989270</pqid></control><display><type>article</type><title>Grey-box model identification of temperature dynamics in a photobioreactor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jiménez-González, A. ; Adam-Medina, M. ; Franco-Nava, M.A. ; Guerrero-Ramírez, G.V.</creator><creatorcontrib>Jiménez-González, A. ; Adam-Medina, M. ; Franco-Nava, M.A. ; Guerrero-Ramírez, G.V.</creatorcontrib><description>•A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated.
This article presents a general strategy for grey-box model identification and deals with some issues that might be present in real life applications. An Unscented Kalman Filter (UKF) is used to train a grey-box temperature model with experimental data from an internally illuminated photobioreactor. The model structure is derived by means of heat balance analysis with the aid of a heat flow diagram. Then, the model is discretized and given an alternative state space representation in such a way that parameters can be readily estimated with an UKF. In order to avoid performance degradation and to improve the stability of the UKF algorithm, the prediction error covariance matrix is estimated and the state covariance matrix square root is calculated with a method based on Schur spectral decomposition to ensure positive semi-definiteness.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2017.03.004</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Covariance matrix ; Decomposition ; Grey-box model ; Heat balance ; Heat transmission ; Internally illuminated photobioreactor ; Kalman filters ; Mathematical models ; Parameter estimation ; Performance degradation ; State space models ; Unscented Kalman Filter</subject><ispartof>Chemical engineering research & design, 2017-05, Vol.121, p.125-133</ispartof><rights>2017 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. May 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c9f6fb0ae4c3a3baf87054907cc60de6fa2632cacfc177861dacb9e11f67b4c83</citedby><cites>FETCH-LOGICAL-c368t-c9f6fb0ae4c3a3baf87054907cc60de6fa2632cacfc177861dacb9e11f67b4c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2017.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jiménez-González, A.</creatorcontrib><creatorcontrib>Adam-Medina, M.</creatorcontrib><creatorcontrib>Franco-Nava, M.A.</creatorcontrib><creatorcontrib>Guerrero-Ramírez, G.V.</creatorcontrib><title>Grey-box model identification of temperature dynamics in a photobioreactor</title><title>Chemical engineering research & design</title><description>•A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated.
This article presents a general strategy for grey-box model identification and deals with some issues that might be present in real life applications. An Unscented Kalman Filter (UKF) is used to train a grey-box temperature model with experimental data from an internally illuminated photobioreactor. The model structure is derived by means of heat balance analysis with the aid of a heat flow diagram. Then, the model is discretized and given an alternative state space representation in such a way that parameters can be readily estimated with an UKF. In order to avoid performance degradation and to improve the stability of the UKF algorithm, the prediction error covariance matrix is estimated and the state covariance matrix square root is calculated with a method based on Schur spectral decomposition to ensure positive semi-definiteness.</description><subject>Covariance matrix</subject><subject>Decomposition</subject><subject>Grey-box model</subject><subject>Heat balance</subject><subject>Heat transmission</subject><subject>Internally illuminated photobioreactor</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Performance degradation</subject><subject>State space models</subject><subject>Unscented Kalman Filter</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjF7BEYk44x6mdDAyoggKqxAKz5VzOqqMmLraL6L8npcxMt7zPe3cPYzccCg5c3vUFril0RQlcFSAKgOqEzbiqqlzMpThlMyilyGsly3N2EWMPMCWresZel4H2eeu_s8F3tMlcR2Ny1qFJzo-Zt1miYUvBpF2grNuPZnAYMzdmJtuuffKt84EMJh-u2Jk1m0jXf_OSfTw9vi-e89Xb8mXxsMpRyDrl2FhpWzBUoTCiNbZWMK8aUIgSOpLWTKeWaNAiV6qWvDPYNsS5laqtsBaX7PbYuw3-c0cx6d7vwjit1CWUvKmbUsGUEscUBh9jIKu3wQ0m7DUHfZCme_0rTR-kaRB6kjZR90eKpge-HAUd0dGI1LlAmHTn3b_8D4Jnd58</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Jiménez-González, A.</creator><creator>Adam-Medina, M.</creator><creator>Franco-Nava, M.A.</creator><creator>Guerrero-Ramírez, G.V.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170501</creationdate><title>Grey-box model identification of temperature dynamics in a photobioreactor</title><author>Jiménez-González, A. ; Adam-Medina, M. ; Franco-Nava, M.A. ; Guerrero-Ramírez, G.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c9f6fb0ae4c3a3baf87054907cc60de6fa2632cacfc177861dacb9e11f67b4c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Covariance matrix</topic><topic>Decomposition</topic><topic>Grey-box model</topic><topic>Heat balance</topic><topic>Heat transmission</topic><topic>Internally illuminated photobioreactor</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Performance degradation</topic><topic>State space models</topic><topic>Unscented Kalman Filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-González, A.</creatorcontrib><creatorcontrib>Adam-Medina, M.</creatorcontrib><creatorcontrib>Franco-Nava, M.A.</creatorcontrib><creatorcontrib>Guerrero-Ramírez, G.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-González, A.</au><au>Adam-Medina, M.</au><au>Franco-Nava, M.A.</au><au>Guerrero-Ramírez, G.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grey-box model identification of temperature dynamics in a photobioreactor</atitle><jtitle>Chemical engineering research & design</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>121</volume><spage>125</spage><epage>133</epage><pages>125-133</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>•A grey-box model identification strategy is presented.•A model structure is derived from first principles.•An UKF is used as the training algorithm.•A Schur method for calculating the matrix square root in the UKF is proposed.•The identification approach is experimentally validated.
This article presents a general strategy for grey-box model identification and deals with some issues that might be present in real life applications. An Unscented Kalman Filter (UKF) is used to train a grey-box temperature model with experimental data from an internally illuminated photobioreactor. The model structure is derived by means of heat balance analysis with the aid of a heat flow diagram. Then, the model is discretized and given an alternative state space representation in such a way that parameters can be readily estimated with an UKF. In order to avoid performance degradation and to improve the stability of the UKF algorithm, the prediction error covariance matrix is estimated and the state covariance matrix square root is calculated with a method based on Schur spectral decomposition to ensure positive semi-definiteness.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2017.03.004</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8762 |
ispartof | Chemical engineering research & design, 2017-05, Vol.121, p.125-133 |
issn | 0263-8762 1744-3563 |
language | eng |
recordid | cdi_proquest_journals_2021989270 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Covariance matrix Decomposition Grey-box model Heat balance Heat transmission Internally illuminated photobioreactor Kalman filters Mathematical models Parameter estimation Performance degradation State space models Unscented Kalman Filter |
title | Grey-box model identification of temperature dynamics in a photobioreactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grey-box%20model%20identification%20of%20temperature%20dynamics%20in%20a%20photobioreactor&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Jim%C3%A9nez-Gonz%C3%A1lez,%20A.&rft.date=2017-05-01&rft.volume=121&rft.spage=125&rft.epage=133&rft.pages=125-133&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2017.03.004&rft_dat=%3Cproquest_cross%3E2021989270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021989270&rft_id=info:pmid/&rft_els_id=S0263876217301375&rfr_iscdi=true |