Absolute Logarithmic Norm
In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of line...
Gespeichert in:
Veröffentlicht in: | Russian mathematics 2018-04, Vol.62 (4), p.60-73 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 4 |
container_start_page | 60 |
container_title | Russian mathematics |
container_volume | 62 |
creator | Perov, A. I. Kostrub, I. D. Kleshchina, O. I. Dikarev, E. E. |
description | In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of linear differential equations with constant coefficients. The presentation of the material relies heavily on the theory of off-diagonally nonnegative matrices arising from the Perron–Frobenius theory for nonnegative matrices. |
doi_str_mv | 10.3103/S1066369X18040072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021767018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021767018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1660600a667505fb71c2f78308f58214b7276872c42acda7b6577643481064363</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf6A3gqeV2eS7Ex6LEWtUPSgQm8hG3frlm63JrsH_70pK3gQT2_gfczjCTFBuFEI6vYFgUjRbI0GNADLEzHCmdKZQVifpjvR2ZE_FxcxbgFykppGYjIvYrvru3K6ajcu1N1HU_vpUxuaS3FWuV0sr35wLN7u714Xy2z1_PC4mK8yr5C6DImAABwR55BXBaOXFRsFpsqNRF2wZDIsvZbOvzsuKGcmrXQqloDUWFwPuYfQfvZl7Oy27cM-vbQSJDIxoEkqHFQ-tDGGsrKHUDcufFkEe1zA_lkgeeTgiUm735ThN_l_0zcFTlkH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021767018</pqid></control><display><type>article</type><title>Absolute Logarithmic Norm</title><source>SpringerNature Journals</source><creator>Perov, A. I. ; Kostrub, I. D. ; Kleshchina, O. I. ; Dikarev, E. E.</creator><creatorcontrib>Perov, A. I. ; Kostrub, I. D. ; Kleshchina, O. I. ; Dikarev, E. E.</creatorcontrib><description>In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of linear differential equations with constant coefficients. The presentation of the material relies heavily on the theory of off-diagonally nonnegative matrices arising from the Perron–Frobenius theory for nonnegative matrices.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X18040072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Differential equations ; Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2018-04, Vol.62 (4), p.60-73</ispartof><rights>Allerton Press, Inc. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1660600a667505fb71c2f78308f58214b7276872c42acda7b6577643481064363</citedby><cites>FETCH-LOGICAL-c316t-1660600a667505fb71c2f78308f58214b7276872c42acda7b6577643481064363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1066369X18040072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1066369X18040072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Perov, A. I.</creatorcontrib><creatorcontrib>Kostrub, I. D.</creatorcontrib><creatorcontrib>Kleshchina, O. I.</creatorcontrib><creatorcontrib>Dikarev, E. E.</creatorcontrib><title>Absolute Logarithmic Norm</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of linear differential equations with constant coefficients. The presentation of the material relies heavily on the theory of off-diagonally nonnegative matrices arising from the Perron–Frobenius theory for nonnegative matrices.</description><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf6A3gqeV2eS7Ex6LEWtUPSgQm8hG3frlm63JrsH_70pK3gQT2_gfczjCTFBuFEI6vYFgUjRbI0GNADLEzHCmdKZQVifpjvR2ZE_FxcxbgFykppGYjIvYrvru3K6ajcu1N1HU_vpUxuaS3FWuV0sr35wLN7u714Xy2z1_PC4mK8yr5C6DImAABwR55BXBaOXFRsFpsqNRF2wZDIsvZbOvzsuKGcmrXQqloDUWFwPuYfQfvZl7Oy27cM-vbQSJDIxoEkqHFQ-tDGGsrKHUDcufFkEe1zA_lkgeeTgiUm735ThN_l_0zcFTlkH</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Perov, A. I.</creator><creator>Kostrub, I. D.</creator><creator>Kleshchina, O. I.</creator><creator>Dikarev, E. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Absolute Logarithmic Norm</title><author>Perov, A. I. ; Kostrub, I. D. ; Kleshchina, O. I. ; Dikarev, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1660600a667505fb71c2f78308f58214b7276872c42acda7b6577643481064363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perov, A. I.</creatorcontrib><creatorcontrib>Kostrub, I. D.</creatorcontrib><creatorcontrib>Kleshchina, O. I.</creatorcontrib><creatorcontrib>Dikarev, E. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perov, A. I.</au><au>Kostrub, I. D.</au><au>Kleshchina, O. I.</au><au>Dikarev, E. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absolute Logarithmic Norm</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>62</volume><issue>4</issue><spage>60</spage><epage>73</epage><pages>60-73</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of linear differential equations with constant coefficients. The presentation of the material relies heavily on the theory of off-diagonally nonnegative matrices arising from the Perron–Frobenius theory for nonnegative matrices.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1066369X18040072</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-369X |
ispartof | Russian mathematics, 2018-04, Vol.62 (4), p.60-73 |
issn | 1066-369X 1934-810X |
language | eng |
recordid | cdi_proquest_journals_2021767018 |
source | SpringerNature Journals |
subjects | Differential equations Mathematics Mathematics and Statistics |
title | Absolute Logarithmic Norm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absolute%20Logarithmic%20Norm&rft.jtitle=Russian%20mathematics&rft.au=Perov,%20A.%20I.&rft.date=2018-04-01&rft.volume=62&rft.issue=4&rft.spage=60&rft.epage=73&rft.pages=60-73&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X18040072&rft_dat=%3Cproquest_cross%3E2021767018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021767018&rft_id=info:pmid/&rfr_iscdi=true |