Absolute Logarithmic Norm

In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2018-04, Vol.62 (4), p.60-73
Hauptverfasser: Perov, A. I., Kostrub, I. D., Kleshchina, O. I., Dikarev, E. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 4
container_start_page 60
container_title Russian mathematics
container_volume 62
creator Perov, A. I.
Kostrub, I. D.
Kleshchina, O. I.
Dikarev, E. E.
description In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of linear differential equations with constant coefficients. The presentation of the material relies heavily on the theory of off-diagonally nonnegative matrices arising from the Perron–Frobenius theory for nonnegative matrices.
doi_str_mv 10.3103/S1066369X18040072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021767018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021767018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1660600a667505fb71c2f78308f58214b7276872c42acda7b6577643481064363</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf6A3gqeV2eS7Ex6LEWtUPSgQm8hG3frlm63JrsH_70pK3gQT2_gfczjCTFBuFEI6vYFgUjRbI0GNADLEzHCmdKZQVifpjvR2ZE_FxcxbgFykppGYjIvYrvru3K6ajcu1N1HU_vpUxuaS3FWuV0sr35wLN7u714Xy2z1_PC4mK8yr5C6DImAABwR55BXBaOXFRsFpsqNRF2wZDIsvZbOvzsuKGcmrXQqloDUWFwPuYfQfvZl7Oy27cM-vbQSJDIxoEkqHFQ-tDGGsrKHUDcufFkEe1zA_lkgeeTgiUm735ThN_l_0zcFTlkH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021767018</pqid></control><display><type>article</type><title>Absolute Logarithmic Norm</title><source>SpringerLink Journals - AutoHoldings</source><creator>Perov, A. I. ; Kostrub, I. D. ; Kleshchina, O. I. ; Dikarev, E. E.</creator><creatorcontrib>Perov, A. I. ; Kostrub, I. D. ; Kleshchina, O. I. ; Dikarev, E. E.</creatorcontrib><description>In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of linear differential equations with constant coefficients. The presentation of the material relies heavily on the theory of off-diagonally nonnegative matrices arising from the Perron–Frobenius theory for nonnegative matrices.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X18040072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Differential equations ; Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2018-04, Vol.62 (4), p.60-73</ispartof><rights>Allerton Press, Inc. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1660600a667505fb71c2f78308f58214b7276872c42acda7b6577643481064363</citedby><cites>FETCH-LOGICAL-c316t-1660600a667505fb71c2f78308f58214b7276872c42acda7b6577643481064363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1066369X18040072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1066369X18040072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Perov, A. I.</creatorcontrib><creatorcontrib>Kostrub, I. D.</creatorcontrib><creatorcontrib>Kleshchina, O. I.</creatorcontrib><creatorcontrib>Dikarev, E. E.</creatorcontrib><title>Absolute Logarithmic Norm</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of linear differential equations with constant coefficients. The presentation of the material relies heavily on the theory of off-diagonally nonnegative matrices arising from the Perron–Frobenius theory for nonnegative matrices.</description><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf6A3gqeV2eS7Ex6LEWtUPSgQm8hG3frlm63JrsH_70pK3gQT2_gfczjCTFBuFEI6vYFgUjRbI0GNADLEzHCmdKZQVifpjvR2ZE_FxcxbgFykppGYjIvYrvru3K6ajcu1N1HU_vpUxuaS3FWuV0sr35wLN7u714Xy2z1_PC4mK8yr5C6DImAABwR55BXBaOXFRsFpsqNRF2wZDIsvZbOvzsuKGcmrXQqloDUWFwPuYfQfvZl7Oy27cM-vbQSJDIxoEkqHFQ-tDGGsrKHUDcufFkEe1zA_lkgeeTgiUm735ThN_l_0zcFTlkH</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Perov, A. I.</creator><creator>Kostrub, I. D.</creator><creator>Kleshchina, O. I.</creator><creator>Dikarev, E. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Absolute Logarithmic Norm</title><author>Perov, A. I. ; Kostrub, I. D. ; Kleshchina, O. I. ; Dikarev, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1660600a667505fb71c2f78308f58214b7276872c42acda7b6577643481064363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perov, A. I.</creatorcontrib><creatorcontrib>Kostrub, I. D.</creatorcontrib><creatorcontrib>Kleshchina, O. I.</creatorcontrib><creatorcontrib>Dikarev, E. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perov, A. I.</au><au>Kostrub, I. D.</au><au>Kleshchina, O. I.</au><au>Dikarev, E. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absolute Logarithmic Norm</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>62</volume><issue>4</issue><spage>60</spage><epage>73</epage><pages>60-73</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>In this paper we introduce and study a new concept of the absolute logarithmic norm, which has much in common with the classical definition of the logarithmic norm by S. M. Lozinskii. The the theory that we develop allows to obtain new facts from the Lyapunov stability theory for the systems of linear differential equations with constant coefficients. The presentation of the material relies heavily on the theory of off-diagonally nonnegative matrices arising from the Perron–Frobenius theory for nonnegative matrices.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1066369X18040072</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-369X
ispartof Russian mathematics, 2018-04, Vol.62 (4), p.60-73
issn 1066-369X
1934-810X
language eng
recordid cdi_proquest_journals_2021767018
source SpringerLink Journals - AutoHoldings
subjects Differential equations
Mathematics
Mathematics and Statistics
title Absolute Logarithmic Norm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absolute%20Logarithmic%20Norm&rft.jtitle=Russian%20mathematics&rft.au=Perov,%20A.%20I.&rft.date=2018-04-01&rft.volume=62&rft.issue=4&rft.spage=60&rft.epage=73&rft.pages=60-73&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X18040072&rft_dat=%3Cproquest_cross%3E2021767018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021767018&rft_id=info:pmid/&rfr_iscdi=true